
l a b o r a t o r y

(Query) History Teaches Everything, Including the Future

(Query) History Teaches Everything, Including
the Future

Fabrizio Silvestri

High Performance Computing Laboratory
Istituto di Scienza e Tecnologie dell’Informazione (ISTI)

Consiglio Nazionale delle Ricerche (CNR)
Pisa, Italy

f.silvestri@isti.cnr.it

October 29th, 2008

(Query) History Teaches Everything, Including the Future

Outline

Outline

1 Introduction

2 Web Search Caching

3 Distributed Web Search
Document Prioritization
Term Partitioning

4 Multimedia Caching

5 Conclusion

(Query) History Teaches Everything, Including the Future

Introduction

What is History in our Case?

Past Queries

Query Sessions

Clicktrough Data

From Google Trends

(Query) History Teaches Everything, Including the Future

Introduction

Our Main Data Source: Query Logs

Store history about users search activity

It is an extremely sensitive data

Some publicly available logs are online

Excite (1997, 1999)
Altavista (2001)
AOL!!!
Microsoft Live! Log (see WSCD 2009)

(Query) History Teaches Everything, Including the Future

Introduction

What does a Query Look Like?

Some Examples

“why is my husband so talkative with my female friends”

“can you hear me out there i can hear you i got you i can hear
you over i really feel strange i wanna wish for something new
this is the scariest thing ive ever done in my life who do we
think we are angels and airwaves im gonna count down till 10
52 i can”

“where is my computer”

(Query) History Teaches Everything, Including the Future

Introduction

What does a Query Look Like?

Some Examples

“why is my husband so talkative with my female friends”

“can you hear me out there i can hear you i got you i can hear
you over i really feel strange i wanna wish for something new
this is the scariest thing ive ever done in my life who do we
think we are angels and airwaves im gonna count down till 10
52 i can”

“where is my computer”

(Query) History Teaches Everything, Including the Future

Introduction

What does a Query Look Like?

Some Examples

“why is my husband so talkative with my female friends”

“can you hear me out there i can hear you i got you i can hear
you over i really feel strange i wanna wish for something new
this is the scariest thing ive ever done in my life who do we
think we are angels and airwaves im gonna count down till 10
52 i can”

“where is my computer”

(Query) History Teaches Everything, Including the Future

Introduction

What Topics are Represented

Distribution of Queries

Topic Percentage
Entertainment 13%
Shopping 13%
Porn 10%
Research & learn 9%
Computing 9%
Health 5%
Home 5%
Travel 5%
Games 5%
Personal & Finance 3%
Sports 3%
US Sites 3%
Holidays 1%
Other 16%

From [Beitzel et al., 2007]

(Query) History Teaches Everything, Including the Future

Introduction

Power-laws in Query Logs

Query Distribution from a Yahoo! Search Engine Log

From [Fagni et al., 2006]

(Query) History Teaches Everything, Including the Future

Introduction

The Architecture of a Distributed Search Engine

IR Core

1

idx

IR Core

2

idx

IR Core

k

idx

t1,t2,…tq r1,r2,…rr

query results

Broker

(Query) History Teaches Everything, Including the Future

Introduction

Data Partitioning

(Query) History Teaches Everything, Including the Future

Web Search Caching

Outline

1 Introduction

2 Web Search Caching

3 Distributed Web Search
Document Prioritization
Term Partitioning

4 Multimedia Caching

5 Conclusion

(Query) History Teaches Everything, Including the Future

Web Search Caching

What is Caching?

!"#$%&'(%(#&)'

#*'+,-%'.'

/0+1%&'

(%(#&)'#*'

+,-%'2'

34,56#7'

8#",5)'

(Query) History Teaches Everything, Including the Future

Web Search Caching

Caching Goals

Increase Hit Ratio

Increase Throughput

Hit Ratio

The ratio between the number of requests satisfied by the cache
and the number of requests issued.

Throughput

The number of requests answered in a time unit, e.g.
query-per-second.

(Query) History Teaches Everything, Including the Future

Web Search Caching

Cache Placement in Web Search Engines

IR Core

1

idx

IR Core

2

idx

IR Core

k

idx

t1,t2,…tq r1,r2,…rr

query results

Broker

Result

Cache

Result/List Cache Result/List CacheResult/List Cache

(Query) History Teaches Everything, Including the Future

Web Search Caching

Is it worthwhile?

Consider again the power-law...

(Query) History Teaches Everything, Including the Future

Web Search Caching

Is it worthwhile?

and now the distance between resubmission of the same query

(Query) History Teaches Everything, Including the Future

Web Search Caching

Eviction Policies

Traditional

LRU

LFU

. . .

see Markatos’ work in [Markatos, 2000]

Related to Search

Lempel and Moran PDC [Lempel and Moran, 2003]

Fagni et al. SDC [Fagni et al., 2006]

Baeza-Yates et al. AC [Baeza-Yates et al., 2007b]

(Query) History Teaches Everything, Including the Future

Web Search Caching

History Based Caching

The Idea

To exploit the power-law to boost up past frequent queries (i.e.
the head of the curve)

Static based caching: was shown to be perform poorly by
Markatos in [Markatos, 2000]

Probability Driven Caching scored queries on the basis of their
likelihood to be seen in the future [Lempel and Moran, 2003]

Static-Dynamic Caching (SDC): mixed up benefit from both
static and classical (i.e. dynamic) caching (e.g. LRU) [Fagni
et al., 2006]

(Query) History Teaches Everything, Including the Future

Web Search Caching

History Based Caching

The Idea

To exploit the power-law to boost up past frequent queries (i.e.
the head of the curve)

Static based caching: was shown to be perform poorly by
Markatos in [Markatos, 2000]

Probability Driven Caching scored queries on the basis of their
likelihood to be seen in the future [Lempel and Moran, 2003]

Static-Dynamic Caching (SDC): mixed up benefit from both
static and classical (i.e. dynamic) caching (e.g. LRU) [Fagni
et al., 2006]

(Query) History Teaches Everything, Including the Future

Web Search Caching

History Based Caching

The Idea

To exploit the power-law to boost up past frequent queries (i.e.
the head of the curve)

Static based caching: was shown to be perform poorly by
Markatos in [Markatos, 2000]

Probability Driven Caching scored queries on the basis of their
likelihood to be seen in the future [Lempel and Moran, 2003]

Static-Dynamic Caching (SDC): mixed up benefit from both
static and classical (i.e. dynamic) caching (e.g. LRU) [Fagni
et al., 2006]

(Query) History Teaches Everything, Including the Future

Web Search Caching

Static-Dynamic Caching

The Idea

Partition the cache into two parts. A statically filled part with the
most frequently submitted in the past queries. A dynamically
managed part using traditional policies (e.g. LRU)

(Query) History Teaches Everything, Including the Future

Web Search Caching

Test Collection

Main characteristics of the query logs used

Query log queries distinct queries date

Excite 2,475,684 1,598,908 September 16th 1997
Tiscali 3,278,211 1,538,934 April 2002
Alta Vista 7,175,648 2,657,410 Summer of 2001

(Query) History Teaches Everything, Including the Future

Web Search Caching

SDC Hit-ratio

(Query) History Teaches Everything, Including the Future

Web Search Caching

The Real Gain

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 50 100 150 200 250 300

Q
ue

rie
s

pe
r

se
co

nd

Number of threads

Throughput - Size 50000 - No prefetching

SLRU-0.4: lock only dynamic
SLRU-0.4: lock all

(Query) History Teaches Everything, Including the Future

Web Search Caching

Posting List Caching

The Idea

Instead of caching the result page for a complete query cache
postings of its composing terms. E.g. For the query LA-Web
Conference, LA, Web and Conference postings will be cached
separately

Traditional policies applied to lists. Correia Saraiva et
al. [Correia Saraiva et al., 2001]

More refined policies based on a knapsack-like approach.
Baeza-Yates et al. [Baeza-Yates et al., 2007a]

(Query) History Teaches Everything, Including the Future

Web Search Caching

Knapsack-like Caching

The Idea

Postings are variable-size. Keep in cache frequently asked but not
so big posting lists.

(Query) History Teaches Everything, Including the Future

Web Search Caching

Issues not covered by this talk

Prefetching: anticipating users’ clicks on the “Next”
button [Fagni et al., 2006]

Sizing the posting and result cache [Baeza-Yates et al., 2007a]

Theoretical analysis of trade-offs in query log
caching [Baeza-Yates et al., 2007a]

(Query) History Teaches Everything, Including the Future

Web Search Caching

Issues not covered by this talk

Prefetching: anticipating users’ clicks on the “Next”
button [Fagni et al., 2006]

Sizing the posting and result cache [Baeza-Yates et al., 2007a]

Theoretical analysis of trade-offs in query log
caching [Baeza-Yates et al., 2007a]

(Query) History Teaches Everything, Including the Future

Web Search Caching

Issues not covered by this talk

Prefetching: anticipating users’ clicks on the “Next”
button [Fagni et al., 2006]

Sizing the posting and result cache [Baeza-Yates et al., 2007a]

Theoretical analysis of trade-offs in query log
caching [Baeza-Yates et al., 2007a]

(Query) History Teaches Everything, Including the Future

Web Search Caching

Lesson Learned

Using history allows us to...

Detect “evergreen” queries (i.e. frequently repeating)

Use these frequent queries to devise effective caching
strategies (i.e. SDC)

Understand that the past is not always as the future (i.e. the
Dynamic Set in SDC)

Not shown... design adaptive prefetching, see [Fagni et al.,
2006]

(Query) History Teaches Everything, Including the Future

Web Search Caching

Lesson Learned

Using history allows us to...

Detect “evergreen” queries (i.e. frequently repeating)

Use these frequent queries to devise effective caching
strategies (i.e. SDC)

Understand that the past is not always as the future (i.e. the
Dynamic Set in SDC)

Not shown... design adaptive prefetching, see [Fagni et al.,
2006]

(Query) History Teaches Everything, Including the Future

Web Search Caching

Lesson Learned

Using history allows us to...

Detect “evergreen” queries (i.e. frequently repeating)

Use these frequent queries to devise effective caching
strategies (i.e. SDC)

Understand that the past is not always as the future (i.e. the
Dynamic Set in SDC)

Not shown... design adaptive prefetching, see [Fagni et al.,
2006]

(Query) History Teaches Everything, Including the Future

Web Search Caching

Lesson Learned

Using history allows us to...

Detect “evergreen” queries (i.e. frequently repeating)

Use these frequent queries to devise effective caching
strategies (i.e. SDC)

Understand that the past is not always as the future (i.e. the
Dynamic Set in SDC)

Not shown... design adaptive prefetching, see [Fagni et al.,
2006]

(Query) History Teaches Everything, Including the Future

Distributed Web Search

Outline

1 Introduction

2 Web Search Caching

3 Distributed Web Search
Document Prioritization
Term Partitioning

4 Multimedia Caching

5 Conclusion

(Query) History Teaches Everything, Including the Future

Distributed Web Search

The Architecture of a Distributed Search Engine... Again!

Usual Set Up

Documents are partitioned assigning randomly a doc to each
partition

Queries are broadcasted to every IR Core

IR Core

1

idx

IR Core

2

idx

IR Core

k

idx

t1,t2,…tq r1,r2,…rr

query results

Broker

(Query) History Teaches Everything, Including the Future

Distributed Web Search

Can be something different done?

Non randomly partition documents and non broadcast
queries...

Document Prioritization [Puppin et al., 2009]

Term Partitioning...

Smart Term Partitioning [Lucchese et al., 2007]

(Query) History Teaches Everything, Including the Future

Distributed Web Search

Can be something different done?

Non randomly partition documents and non broadcast
queries...

Document Prioritization [Puppin et al., 2009]

Term Partitioning...

Smart Term Partitioning [Lucchese et al., 2007]

(Query) History Teaches Everything, Including the Future

Distributed Web Search

Can be something different done?

Non randomly partition documents and non broadcast
queries...

Document Prioritization [Puppin et al., 2009]

Term Partitioning...

Smart Term Partitioning [Lucchese et al., 2007]

(Query) History Teaches Everything, Including the Future

Distributed Web Search

Can be something different done?

Non randomly partition documents and non broadcast
queries...

Document Prioritization [Puppin et al., 2009]

Term Partitioning...

Smart Term Partitioning [Lucchese et al., 2007]

(Query) History Teaches Everything, Including the Future

Distributed Web Search

Document Prioritization

Document Prioritization

The Idea

Don’t split documents randomly but cluster them in partitions
according to how they appear together in search result pages.

The Overall Picture

Collect associations query ↔ retrieved documents

Compute document similarities according to queries answered
in common

Divide collection according to document similarities

(Query) History Teaches Everything, Including the Future

Distributed Web Search

Document Prioritization

Document Prioritization

The Idea

Don’t split documents randomly but cluster them in partitions
according to how they appear together in search result pages.

The Overall Picture

Collect associations query ↔ retrieved documents

Compute document similarities according to queries answered
in common

Divide collection according to document similarities

(Query) History Teaches Everything, Including the Future

Distributed Web Search

Document Prioritization

Document Prioritization

The Idea

Don’t split documents randomly but cluster them in partitions
according to how they appear together in search result pages.

The Overall Picture

Collect associations query ↔ retrieved documents

Compute document similarities according to queries answered
in common

Divide collection according to document similarities

(Query) History Teaches Everything, Including the Future

Distributed Web Search

Document Prioritization

Computing Document Similarity

Can be done using a “traditional” clustering algorithm

We applied co-clustering to the Query-Vector matrix M

Definition

Query-vector Matrix. Let Q be a query log containing queries
q1, q2, . . . , qm. Let Di = di1, di2, . . . , dini be the set of documents
returned, by a reference search engine, as results to query qi.
Mij = 1 if and only if document dj is in the result set of query qi
(0 if dj is not a match for qi).

(Query) History Teaches Everything, Including the Future

Distributed Web Search

Document Prioritization

Co-clustering the Query-vector Matrix

The Idea

Reorder rows and columns of the matrix to obtain dense blocks of
1’s

Example

(Query) History Teaches Everything, Including the Future

Distributed Web Search

Document Prioritization

A Nice By-Product of Co-Clustering

The PCAP (P̂) Matrix

Co-clustering produces a matrix we called P̂ representing how rows
and columns are cohesive in each cluster

Using P̂

A query q is scored against each query cluster using a
“traditional” ranking score to obtain rq(qci)

The contribution of P̂ for a document cluster dcj is given by

rq(dcj) =
∑
i

rq(qci) · P̂ (i, j)

(Query) History Teaches Everything, Including the Future

Distributed Web Search

Document Prioritization

An Example

Suppose we score the query-clusters respectively 0.2, 0.8 and 0, for
a given query q. We compute the vector rq(dci) by multiplying the
matrix PCAP by rq(qci), and we will rank the collections dc3, dc1,
dc2, dc5, dc4 in this order.

PCAP dc1 dc2 dc3 dc4 dc5 rq(qci)
qc1 0.5 0.8 0.1 0.2
qc2 0.3 0.2 0.1 0.8
qc3 0.1 0.5 0.8 0

rq(dc1) = 0 + 0.3× 0.8 + 0 = 0.24
rq(dc2) = 0.5× 0.2 + 0 + 0 = 0.10
rq(dc3) = 0.8× 0.2 + 0.2× 0.8 + 0 = 0.32
rq(dc4) = 0.1× 0.2 + 0 + 0 = 0.02
rq(dc5) = 0 + 0.1× 0.8 + 0 = 0.08

(Query) History Teaches Everything, Including the Future

Distributed Web Search

Document Prioritization

Collection Prioritization

Collections are ranked w.r.t. a query q

q is broadcasted along with the ranked list of servers

The most promising core will receive a query tagged with top
priority, equal to 1.

The other cores c will receive a query q tagged with linearly
decreasing priority pq,c (down to 1/N , with N cores).

Thresholding Strategies

At time t, a core c with current load lc,t will serve the query q if:

lc,t × pq,c < L

where L is a load threshold that represents the computing power
available to the system.

(Query) History Teaches Everything, Including the Future

Distributed Web Search

Document Prioritization

Incremental Caching

The Idea

Queries may not be answered by all servers

Use a prioritization-aware caching policy keeping track of
what servers are missing from the list of servers for each
cached query

If a query is in cache check if its list of server is complete

If not, forward the query only to those servers that did not
previously answer

(Query) History Teaches Everything, Including the Future

Distributed Web Search

Document Prioritization

Test Collection

The WBR99 test collection

d 5,939,061 documents taking (uncompressed) 22 GB
t 2,700,000 unique terms
t′ 74,767 unique terms in queries
tq 494,113 (190,057 unique) queries in the training set
q1 194,200 queries in the main test set (first week - TodoBR)

(Query) History Teaches Everything, Including the Future

Distributed Web Search

Document Prioritization

Evaluation Metric

Competitive Similarity

The competitive similarity at N, COMPN (q), measures the
relative quality of results coming from collection selection with
respect to the best results from the central index

(Query) History Teaches Everything, Including the Future

Distributed Web Search

Document Prioritization

Results

Parameters

Cache Size: 32k results

Policy: Incremental LRU

 40

 50

 60

 70

 80

 90

 100

OVR16151413121110987654321

Number of polled servers/Load level

Metric: COMP20

FIXED*
NO SELECTION

NO SELECTION + INC
BOOST

BOOST + INC

(Query) History Teaches Everything, Including the Future

Distributed Web Search

Document Prioritization

Overall Considerations

We retrieve more than 1/3 of the most relevant results that a
full index would return, by querying only the first server
returned by our selection function

Use the instant load at each server for driving query routing

We can reach a competitive similarity of about 2/3, with a
computing load of 10%, i.e. a server answers no more than
100 queries out of every 1000.

A system, with a slightly higher load (25%), can reach a
whooping 80% competitive similarity w.r.t. a centralized
global index.

More info in [Puppin et al., 2009]

(Query) History Teaches Everything, Including the Future

Distributed Web Search

Term Partitioning

Term Partitioning

Instead of dividing documents and then separately index them,
index documents and split the index along dictionary partitions.

IR Core

1

idx

IR Core

2

idx

IR Core

k

idx

t1,t2,…tq r1,r2,…rr

query results

Broker

(Query) History Teaches Everything, Including the Future

Distributed Web Search

Term Partitioning

Smart Term Partitioning

What do we mean with the term “Smart”?

We want to find a “Smart” way to partition the term-document matrix
to enhance performance of Term Partitioned IR systems

We want to allow TP systems to answer queries using few servers per
query (enhancing overall system’s capacity) and by spreading queries to
all the available servers (balancing the load).

(Query) History Teaches Everything, Including the Future

Distributed Web Search

Term Partitioning

Definitions

q is forwarded to Hλ(Q) servers
Hλ is the set of servers containing postings lists for some terms
of the query according to the partitioning λ of the lexicon

Given the pair (t, lt) ∈ I, where t is a term of the lexicon and
lt is the length of its postings list, we will use the following
symbols:

Tdisk(|lt|): time to transfer from disk the postings list lt
Tcompute(|lt|): time spent on the postings list lt
Toverhead: CPU time spent by a server in network I/O

Let Qjλ be the subsets of the terms in Q assigned to the
server j according to the partitioning λ:

T jλ(Q) = Toverhead +
∑
t∈Qjλ

(Tdisk(|lt|) + Tcompute(|lt|))

(Query) History Teaches Everything, Including the Future

Distributed Web Search

Term Partitioning

Definitions

q is forwarded to Hλ(Q) servers
Hλ is the set of servers containing postings lists for some terms
of the query according to the partitioning λ of the lexicon

Given the pair (t, lt) ∈ I, where t is a term of the lexicon and
lt is the length of its postings list, we will use the following
symbols:

Tdisk(|lt|): time to transfer from disk the postings list lt
Tcompute(|lt|): time spent on the postings list lt
Toverhead: CPU time spent by a server in network I/O

Let Qjλ be the subsets of the terms in Q assigned to the
server j according to the partitioning λ:

T jλ(Q) = Toverhead +
∑
t∈Qjλ

(Tdisk(|lt|) + Tcompute(|lt|))

(Query) History Teaches Everything, Including the Future

Distributed Web Search

Term Partitioning

Definitions

q is forwarded to Hλ(Q) servers
Hλ is the set of servers containing postings lists for some terms
of the query according to the partitioning λ of the lexicon

Given the pair (t, lt) ∈ I, where t is a term of the lexicon and
lt is the length of its postings list, we will use the following
symbols:

Tdisk(|lt|): time to transfer from disk the postings list lt
Tcompute(|lt|): time spent on the postings list lt
Toverhead: CPU time spent by a server in network I/O

Let Qjλ be the subsets of the terms in Q assigned to the
server j according to the partitioning λ:

T jλ(Q) = Toverhead +
∑
t∈Qjλ

(Tdisk(|lt|) + Tcompute(|lt|))

(Query) History Teaches Everything, Including the Future

Distributed Web Search

Term Partitioning

Working Hypothesis

Completion Time of queries in Φ

L̂λ(Φ) = max
j

∑
Q∈Φ

T jλ(Q)

In term-partitioned WSE with a partitioning function λ the following two
hypothesis hold

Throughput

O
(
|Φ|/L̂λ

)
Query Latency

O
(∑

Q∈ΦHλ(Q)/|Φ|,
)

(Query) History Teaches Everything, Including the Future

Distributed Web Search

Term Partitioning

The Term Assignment Problem

The Term-Assignment Problem. Given a weight α, 0 ≤ α ≤ 1,
a query stream Φ, the Term-Assignment Problem asks for finding
the partitioning λ which minimizes

Ωλ (Φ) = α · ωλ (Φ)
Nω

+ (1− α) · L̂λ(Φ)
NL

where Nω and NL are normalization constants.

The Idea

The first term is related to query latency, the second to the
throughput.

(Query) History Teaches Everything, Including the Future

Distributed Web Search

Term Partitioning

The Term Assignment Problem

The Term-Assignment Problem. Given a weight α, 0 ≤ α ≤ 1,
a query stream Φ, the Term-Assignment Problem asks for finding
the partitioning λ which minimizes

Ωλ (Φ) = α · ωλ (Φ)
Nω

+ (1− α) · L̂λ(Φ)
NL

where Nω and NL are normalization constants.

The Idea

The first term is related to query latency, the second to the
throughput.

(Query) History Teaches Everything, Including the Future

Distributed Web Search

Term Partitioning

Query Log Information

The term partitioning problem has been stated in terms of the query
stream Φ.

Information about future queries are obviously unavailable at
partitioning time.

We can exploit the presence of power law in query logs to extract
frequently occurring patterns of terms within queries.

The idea is to assign frequently co-occurring terms to the same
partition.

Intuitively both ω and L̂ can be optimized by taking into
consideration conjunctions of terms. In fact, by assigning to the
same partition terms that often co-occur together we reduce both
the average width and the overhead due to extra communications.

(Query) History Teaches Everything, Including the Future

Distributed Web Search

Term Partitioning

Experimental Settings

Query Logs Used

Query log queries terms query len. date

TodoBR 22,589,568 959,833 3.433 2001
AltaVista 7,175,648 895,792 2.507 Summer 2001

Queries are transformed in lower case

Query logs were split in 2/3 for training (Φtraining) 1/3 for testing
(Φtest)

We validated our approach by simulating a broker and assuming
constant times for Tdisk, Tcompute, and Toverhead disregarding the
lengths of the posting lists.

We considered a partitioning of the index among p = 8 servers.

(Query) History Teaches Everything, Including the Future

Distributed Web Search

Term Partitioning

Width of queries

Percentages of queries as a function of the number of servers
involved in their processing

Baseline Cases Term Assignment
Servers random bin packing α = 0.9

Φtest = TodoBR
1 28 28 50
2 31 30 20
3 17 17 14
> 3 24 25 16

Φtest = AltaV ista
1 29 29 41
2 39 39 38
3 21 21 16
> 3 11 11 5

(Query) History Teaches Everything, Including the Future

Distributed Web Search

Term Partitioning

More info

In [Lucchese et al., 2007] many results have been shown:

Comparison with simple bin-packing

Load Balancing

Term Replication

What’s still missing

Testing of “actual” performance gains (hopefully) on a real term
partitioning search engine system.

(Query) History Teaches Everything, Including the Future

Distributed Web Search

Term Partitioning

Lesson Learned

Using history allows us to...

Improve both Document and Term Partitioning based search
engines

Query Vector Model boosts a scheme called Collection
Prioritization

Basically we exploit the association of past submitted queries
with returned results

The Term Assignment Problem exploit co-occurrence of terms
within queries submitted in the past to compute an optimized
assignment of terms to partitions

(Query) History Teaches Everything, Including the Future

Distributed Web Search

Term Partitioning

Lesson Learned

Using history allows us to...

Improve both Document and Term Partitioning based search
engines

Query Vector Model boosts a scheme called Collection
Prioritization

Basically we exploit the association of past submitted queries
with returned results

The Term Assignment Problem exploit co-occurrence of terms
within queries submitted in the past to compute an optimized
assignment of terms to partitions

(Query) History Teaches Everything, Including the Future

Distributed Web Search

Term Partitioning

Lesson Learned

Using history allows us to...

Improve both Document and Term Partitioning based search
engines

Query Vector Model boosts a scheme called Collection
Prioritization

Basically we exploit the association of past submitted queries
with returned results

The Term Assignment Problem exploit co-occurrence of terms
within queries submitted in the past to compute an optimized
assignment of terms to partitions

(Query) History Teaches Everything, Including the Future

Distributed Web Search

Term Partitioning

Lesson Learned

Using history allows us to...

Improve both Document and Term Partitioning based search
engines

Query Vector Model boosts a scheme called Collection
Prioritization

Basically we exploit the association of past submitted queries
with returned results

The Term Assignment Problem exploit co-occurrence of terms
within queries submitted in the past to compute an optimized
assignment of terms to partitions

(Query) History Teaches Everything, Including the Future

Multimedia Caching

Outline

1 Introduction

2 Web Search Caching

3 Distributed Web Search
Document Prioritization
Term Partitioning

4 Multimedia Caching

5 Conclusion

(Query) History Teaches Everything, Including the Future

Multimedia Caching

A Multimedia Retrieval System

(Query) History Teaches Everything, Including the Future

Multimedia Caching

Scalability Issues in Multimedia Retrieval

Traditional (Yahoo!-like) multimedia retrieval is based on
textual meta-information devised from the context in which
multimedia elements appear.

Content Based Image Retrieval (CBIR) suffer from scalability
issues like:

Visual descriptor are expensive to obtain
Metrics to compute similarity are fast, yet not fast enough.

Caching for CBIR can be a viable approach

(Query) History Teaches Everything, Including the Future

Multimedia Caching

Caching in CBIR

The Main Issue

Queries are by-example people might look for the same image even
if they are submitting different images.

(Query) History Teaches Everything, Including the Future

Multimedia Caching

The Need for Similarity Caching

A possible Solution: QCache

When a new query q is submitted, try to retrieve the result set of
the closest queries (qi, qh in the example) in cache. More details
in [Falchi et al., 2008]

(Query) History Teaches Everything, Including the Future

Multimedia Caching

The Curse of Lacking Data

CBIR system logs are not available

To generate a realistic log we must take into account:

The distribution of topic popularity in the log is similar to the one found
in text-based query logs [van Zwol, 2007]

About 8% of the images in the web are near-duplicates [Foo et al., 2007]

Steps to Generate our CBIR Log

We took CoPhIR1 and we observed that image popularity in pictures
follows a power-law

We injected 8% of duplicate images

We sampled 100, 000 images according to their popularity as
representative queries

1http://cophir.isti.cnr.it

(Query) History Teaches Everything, Including the Future

Multimedia Caching

The Curse of Lacking Data

CBIR system logs are not available

To generate a realistic log we must take into account:

The distribution of topic popularity in the log is similar to the one found
in text-based query logs [van Zwol, 2007]

About 8% of the images in the web are near-duplicates [Foo et al., 2007]

Steps to Generate our CBIR Log

We took CoPhIR1 and we observed that image popularity in pictures
follows a power-law

We injected 8% of duplicate images

We sampled 100, 000 images according to their popularity as
representative queries

1http://cophir.isti.cnr.it

(Query) History Teaches Everything, Including the Future

Multimedia Caching

The Curse of Lacking Data

CBIR system logs are not available

To generate a realistic log we must take into account:

The distribution of topic popularity in the log is similar to the one found
in text-based query logs [van Zwol, 2007]

About 8% of the images in the web are near-duplicates [Foo et al., 2007]

Steps to Generate our CBIR Log

We took CoPhIR1 and we observed that image popularity in pictures
follows a power-law

We injected 8% of duplicate images

We sampled 100, 000 images according to their popularity as
representative queries

1http://cophir.isti.cnr.it

(Query) History Teaches Everything, Including the Future

Multimedia Caching

The Curse of Lacking Data

CBIR system logs are not available

To generate a realistic log we must take into account:

The distribution of topic popularity in the log is similar to the one found
in text-based query logs [van Zwol, 2007]

About 8% of the images in the web are near-duplicates [Foo et al., 2007]

Steps to Generate our CBIR Log

We took CoPhIR1 and we observed that image popularity in pictures
follows a power-law

We injected 8% of duplicate images

We sampled 100, 000 images according to their popularity as
representative queries

1http://cophir.isti.cnr.it

(Query) History Teaches Everything, Including the Future

Multimedia Caching

Test Settings

1M images from the CoPhIR2 collection

The log synthesized as explained before

An index over the 1M images of the CoPhIR collection built
using MTree3

QCache the cache system following the approximate caching
strategy depicted above

2http://cophir.isti.cnr.it
3http://lsd.fi.muni.cz/trac/mtree/

(Query) History Teaches Everything, Including the Future

Multimedia Caching

Results

Hit Ratio

(Query) History Teaches Everything, Including the Future

Multimedia Caching

Lesson Learned

Using history allows us to...

State that QCache, an approximate caching policy, is
worthwhile

approximate, here, means that we search for similar previously
submitted queries within cache entries

(Query) History Teaches Everything, Including the Future

Multimedia Caching

Lesson Learned

Using history allows us to...

State that QCache, an approximate caching policy, is
worthwhile

approximate, here, means that we search for similar previously
submitted queries within cache entries

(Query) History Teaches Everything, Including the Future

Conclusion

Outline

1 Introduction

2 Web Search Caching

3 Distributed Web Search
Document Prioritization
Term Partitioning

4 Multimedia Caching

5 Conclusion

(Query) History Teaches Everything, Including the Future

Conclusion

Conclusion

My Two Cents

Using query logs is very important for improving the efficiency
of Search Engine systems

Uses different from pure caching has been shown to be
effective

More to come... Stay Tuned!

Fabrizio Silvestri, Mining Query Logs: Turning Search Usage Data
into Knowledge , Foundations and Trends in Information Retrieval.
2009. To Appear.

(Query) History Teaches Everything, Including the Future

Conclusion

Conclusion

My Two Cents

Using query logs is very important for improving the efficiency
of Search Engine systems

Uses different from pure caching has been shown to be
effective

More to come... Stay Tuned!

Fabrizio Silvestri, Mining Query Logs: Turning Search Usage Data
into Knowledge , Foundations and Trends in Information Retrieval.
2009. To Appear.

(Query) History Teaches Everything, Including the Future

Conclusion

QUESTIONS????

(Query) History Teaches Everything, Including the Future

References

References

[Baeza-Yates et al., 2007a] R. Baeza-Yates, A. Gionis, F. Junqueira,
V. Murdock, V. Plachouras, and F. Silvestri, The impact of caching
on search engines, Proceedings of the ACM SIGIR 2007 (New York,
NY, USA), ACM, 2007, pp. 183–190.

[Baeza-Yates et al., 2007b] Ricardo A. Baeza-Yates, Flavio
Junqueira, Vassilis Plachouras, and Hans Friedrich Witschel,
Admission policies for caches of search engine results, SPIRE (Nivio
Ziviani and Ricardo A. Baeza-Yates, eds.), Lecture Notes in
Computer Science, vol. 4726, Springer, 2007, pp. 74–85.

[Beitzel et al., 2007] Steven M. Beitzel, Eric C. Jensen, Abdur
Chowdhury, Ophir Frieder, and David Grossman, Temporal analysis
of a very large topically categorized web query log, J. Am. Soc. Inf.
Sci. Technol. 58 (2007), no. 2, 166–178.

(Query) History Teaches Everything, Including the Future

References

References

[Markatos, 2000] Markatos E.P., On caching search engine query
results, Computer Communications 24 (1 February 2000),
137–143(7).

[Fagni et al., 2006] Tiziano Fagni, Raffaele Perego, Fabrizio Silvestri,
and Salvatore Orlando, Boosting the performance of web search
engines: Caching and prefetching query results by exploiting
historical usage data, ACM Trans. Inf. Syst. 24 (2006), no. 1, 51–78.

[Falchi et al., 2008] Fabrizio Falchi, Claudio Lucchese, Salvatore
Orlando, Raffaele Perego, and Fausto Rabitti, A metric cache for
similarity search, Proceedings of the 6th Workshop on Large-Scale
Distributed Systems for Information Retrieval (LSDS-IR’08),
October 30th 2008.

(Query) History Teaches Everything, Including the Future

References

References

[Foo et al., 2007] J. J. Foo, J. Zobel, R. Sinha, and S. M. M.
Tahaghoghi, Detection of near-duplicate images for web search,
Proceedings of ACM CIVR ’07 (New York, NY, USA), ACM, 2007,
pp. 557–564.

[Lempel and Moran, 2003] Ronny Lempel and Shlomo Moran,
Predictive caching and prefetching of query results in search engines,
WWW ’03: Proceedings of the 12th international conference on
World Wide Web (New York, NY, USA), ACM, 2003, pp. 19–28.

[Lucchese et al., 2007] C Lucchese, S. Orlando, R. Perego, and
F. Silvestri, Mining query logs to optimize index partitioning in
parallel web search engines, Infoscale, 2007, p. 43.

(Query) History Teaches Everything, Including the Future

References

References

[Puppin et al., 2009] D. Puppin, F. Silvestri, R. Perego, and
R. Baeza-Yates, Tuning the capacity of search engines: Load-driven
routing and incremental caching to reduce and balance the load, to
Appear in ACM TOIS (2009).

[Correia Saraiva et al., 2001] Paricia Correia Saraiva, Edleno Silva
de Moura, Novio Ziviani, Wagner Meira, Rodrigo Fonseca, and
Berthier Ribeiro-Neto, Rank-preserving two-level caching for scalable
search engines, SIGIR ’01: Proceedings of the 24th annual
international ACM SIGIR conference on Research and development in
information retrieval (New York, NY, USA), ACM, 2001, pp. 51–58.

[van Zwol, 2007] R. van Zwol, Flickr: Who is looking?, Proceedings
of WI 2007, November 2007.

	Outline
	Introduction
	Web Search Caching
	Distributed Web Search
	Document Prioritization
	Term Partitioning

	Multimedia Caching
	Conclusion
	References

