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9. RANDOM FAILURES, INTENTIONAL ATTACKS 

AND CASCADING CATASTROPHES



Robustness should be reflected in the networks 

deduced from complex systems. 

Complex systems have many units, components, with 

different kinds of interactions, which all can break 

down.  

First guess: Complexity causes vulnerability

Wrong: There must be mechanisms to make complex 

systems robust – otherwise we could not observe 

them!



Topological robustness against random failures:

Elements of the network (nodes or links) break down, 

i.e., are randomly removed – and the networks still 

functions! 

A simple definition of functioning: The survival of the 

giant component.

Robustness against intentional attack:

Elements are removed in a vicious/efficient manner to 

cause most harm/effect. 



The random failure case is a percolation problem on 

a complex network (site or bond  node or link) 

We do not occupy

sites at random 

but remove them 

randomly – the 

same theory can 

be applied



pc

P∞

occupation/activation

failure/removal

P∞ is the relative 

weight or density of 

the infinite cluster or 

giant component.



Site percolation

Wrong nodes removed

Bond percolation

Broken links removed



Already mentioned results:

1. Erdős-Rényi graph has a phase transition at <k> = 1:

<k> < 1  no giant component

<k> > 1  there is a giant component

av deg = 0.99av deg = 1.18

av deg = 3.96

Bond percolation: links are removed until the giant 

component falls apart. 
pc =

L

N(N -1) / 2
=

N / 2

N(N -1) / 2
=

1

N -1
® 0

Note that     

Lada Adamic ppt



2. Configuration model (random network with arbitrary 

degree distribution): 

Molloy-Reed criterion: There is giant component if

k2 - 2 k > 0

P∞

γ

This suggests that 
for small enough γ
breaking the giant 

component will be 

difficult.

Newman

γc
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Based on the MR criterion, we can introduce a 

parameter, the inhomogeneity ratio, indicating on 

which side of the transition we are:
κ>2:  a giant cluster exists

κ<2:  many disconnected clusters

Critical point: κ = 2

How does the degree distribution change upon node  

deletion?

First example: ER graph. A randomly diluted ER graph 

is also an ER graph. Degrees: Poisson-distributed

   

P(k) = e-<k> < k >k
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What about general degree distributions?

Let us call the fraction of nodes removed f = 1 – p.

Removing a node changes the degrees of the 

neighboring nodes and the degree distribution. 

Let us consider the configuration model.



The probability that an originally k-degree node 

becomes a k’ < k degree node is a binomial 

distribution (remove k – k’ nodes from k at random) : 
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How do the moments change? (We need them for 

the MR criterion.)
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Trick 2: k!= k(k -1)! both in denominator and nominator
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< k '2 > f = (1- f )2 < k2 > + f (1- f ) < k >

< k ' > f = (1- f ) k

Similarly for the second moment:

Cohen et al., Phys. Rev. Lett. 85, 4626 (2000)

Can be derived in a similar manner as <k’>f using 

Trick 4: 
fff kkkk  ')1'(''2

Now we can apply the RM criterion to the new degree 

distributions to determine the critical value of f = (1–p)
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1
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If a random network (configuration nw) with original 

degree distribution P(k) suffers from failures, which 

destroy the nodes randomly with probability f, the 

network will be resilient until fc, i.e., up to that point 

the giant component will exist and the network can 

(hopefully) fulfill its function.

Cohen et al., Phys. Rev. Lett. 85, 4626 (2000)



Many networks have power law degree distributions. 

Let us consider the configuration model with power 
law distribution of degrees. Only 1 < γ < γc is 

interesting (existence of giant component).

fc =1-
1

k -1
=
k2 - 2 k

k2 - k
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mm kkPkk ~)( In a infinite system the 

summation goes to ∞

Moments exist only if m < γ–1.

If γ≤ 3, the second moment diverges.

Forγ≤ 3 the critical value fc = 1, i.e., in an infinite system 

all finite fractions of the nodes have to be removed to 

destroy the giant component! Resilience against failure
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Increasing system size

Cohen et al., Phys. Rev. Lett. 85, 4626 (2000)

P∞



While the derivations used massively the random 

nature of the configuration model, the lesson seems to 

be valid for empirical networks!

The reason is that the rare but important hubs assure 

the survival of the giant component and this is present 

in any power law degree distribution.

Empirical networks are finite, there we cannot expect 

fc = 1 but values close to it, if the network is large.



Albert, Jeong, Barabási, Nature 406 378 (2000)

P∞

Empirical study: the 

Internet

Internet 
Router level map, N=228,263; γ=2.1±0.1;    κ=28

 fc=0.962
AS  level map, N=  11,164; γ=2.1±0.1;    κ=264

 fc=0.996



Error tolerance of scale free complex networks: 

Possible source of their ubiquity.

Complex systems have to develop mechanisms to 

protect themselves against random failures. The scale 

free topology is one of them. 

This robustness is not always advantageous: 

How to stop the spreading of an infection (e.g., 

computer virus) on a scale free network? Isolating the 

disease by random removal of nodes (e.g, vaccination) 

is not a good strategy.



The robustness of scale free networks is due to the 

hubs, which are difficult to hit by chance.

What if the removal is not random but vicious: 

Somebody (e.g, a terrorist) wants to paralize the 

Internet.

The targeted attack should go against the hubs! We 

assume that the terrorist knows the network and 

destroys the a fraction of the highest connectivity 

nodes.

A more peaceful interpretation: How to do efficient 

vaccination?



The analytical approach is based on the fact that this 

time a fraction f of the hubs is removed instead of 

nodes at random.

The calculations show that the situation changes 

dramatically: There will always be a threshold and its 

value is rather low.

fc

γ

Cohen et al 2001

f

As 𝛾 increases

𝑃∞ decreases

𝑁

For γ = 2
𝑓𝑐 → 0, for one 

hub controls

𝛾



R. Albert, H. Jeong, A.L. Barabasi, Nature 406 378 (2000)

Empirical comparison between random failure and 

intentional attack: Internet

P∞



For scale free conf. 

model (implicit eq)
Cohen et al, 2001

Scale-free networks are more error tolerant, but also 
more vulnerable to attacks 



• blue squares: random failure

• red circles: targeted attack

• open symbols: P∞

• filled symbols: l

• break down if 5% of the nodes are eliminated selectively (always 

the highest degree node)

• resilient to the random failure of 50% of the nodes.

Similar results have been obtained for metabolic networks and 

food webs.

S

S

l
l

Real scale-free networks show the same dual behavior 

All this is static!



In spite of the overall tolerance against random 

failures complex systems show sometimes extreme 

vulnerability against them.

As these are nonlinear dynamic systems some 

failures may trigger further ones leading to collapse

“Avalanches”, “cascading failures”, “domino effect”







Finance:



Wikipedia



Consequences
More than 508 generating units at 265 
power plants shut down during the 
outage. In the minutes before the 
event, the NYISO-managed power 
system was carrying 28,700 MW of 
load. At the height of the outage, the 
load had dropped to 5,716 MW, a loss 
of 80%.

Origin
A 3,500 MW power surge (towards Ontario) 
affected the transmission grid at 4:10:39 p.m. 
EDT. (Aug-14-2003)

Before the blackout         After the blackout

Major North-East Blackout



Probability of energy 
unserved during North 
American blackouts 
1984 to 1998.

Source Exponent
Quantit

y

North America 2.0 Power

Sweden 1.6 Energy

Norway 1.7 Power

New Zealand 1.6 Energy

China 1.8 Energy

I. Dobson, B. A. Carreras, V. E. Lynch, D. E. Newman, CHAOS 17, 026103 (2007)

P(S) ~ S −α, 1< α < 2

Size distribution of blackouts



Per Bak (1987): Why is power-law so ubiquitous? 

The critical state emerges as a result of self-

organization!

Example: sandpile (more language than concrete 

physical example)

Bak, Tang, Wiesenfeld PRL (1987)

Avalanche 

statistics: 

power-law

(not for sand…) 

Hesse and gross, Front. Syst. Neurosci, 2014



V. Frette et al. Nature 1996



 Starting with a flat surface Z(x,y) = 0 for all x

and y. 

 Add a grain of sand:   Z(x,y) = Z(x,y) + 1 . 

 Start avalanche if  Z(x,y) > Zc :

1),1(),1(  yxZyxZ

1)1,()1,(  yxZyxZ

4),(),(  yxZyxZ

At the boundary “grains” leave the system assuring 

constant density on the average 



Self-organized criticality Not failure 

but 

avalanche 

statistics

power law.

Non-

linearity 

due to

feedback 

causes 

power law

P- Bak 1988



P. Grassbergerg’s interpretation
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Shapes of effected regions Size distribution of 

avalanches

Similar results for the Manna model, where 2 “grains” 

are toppled irrespective of the dimension of the lattice

S. S. Manna, J. Phys. A (1991)



Simple mechanism leading to SOC: Let us play the 

Manna model in 1D with periodic BC (a ring of size 𝐿) 

and constant density 𝜌. Grains are conserved.

If 𝜌 ≪ 1 the system goes to an absorbing state: at 

stationarity nothing moves.

If 𝜌 > 1 there is no absorbing state: There will always 

be sites with 𝑧 ≥ 𝑧𝑐 = 2
It can be shown that there is a non-trivial 𝜌𝑐 < 1 such 

that even for 𝜌𝑐 < 𝜌 there is no absorbing stationary 

state in the TDL.

This is a continuous phase transition with the density of 

active sites (i.e., sites with 𝑧 ≥ 2) as order parameter.



What if we use open BC, i.e., grains can leave the 

system and we add grains if avalanches stop? 

(Manna model)

If 𝜌 < 𝜌𝑐 the system is gets frozen. Then new grains 

are added.

If 𝜌 > 𝜌𝑐 the activity persists until grains flow out of 

the system. 

As a consequence, the system drives itself to the 

critical state.

There are 2 important elements:

- Conservation (grains do not disappear in the bulk)

- Separation of time scales (new grain comes if 

system is at rest)
Dickman et al. Braz. J. Phys. 2000



Finite size scaling

Dickman et al. Braz. J. Phys. 2000 Huynh, Pruessner PRE, 2012



Role of conservation: 

Cumulative distribution

Let 𝑅 be the prob. that 

during toppling a 

particle vanishes.

𝑃 𝑠 ~𝑠−𝜏 exp(−𝑠/𝑠∗)

With

𝑠∗~𝑅−𝜓

Manna et al. J. Stat.Phys. 1990



Generalization of BTW to uncorrelated scale free 

networks: node-dependent thresholds (= degree 𝑘)

𝑃(𝑘)~𝑘−𝛾

Using theory of branching processes the SNU 

group could calculate the exponents

Mean field, independent of 𝛾

𝛾-dependent exponents

theorsimul



Motter, Lai PRE (2002)

Capacities: (1+α)S

Initially the system works 

fine

Start: loads S = betweenness = # shortest paths

After a failure, load has to 

be redistributed among  

the neighbors avalanche

Simulation of the model networks. G (not damaged part) 

vs α and the initiator. ∗ max load, o: hub, ⊡: random

Regular network

𝑘 = 3

Scale free nw

𝑘 = 3, 𝛾 = 3
Global reloading



Load: el. current (random fuse model)

1. Solve Kirchoff’s eqs, 

2. Set thresholds at 1 + 𝛼 𝑖
3. Remove a link at random, 

4. Solve Kirchoff

5. Remove links where current exceeds threshold

6. Go to 3 until no more bad links found

Consider a network (power grid) made up of resistors

Introduce current at a random point and a drain at

another. Fix voltage.

Bakke et al. Europhys. Lett. 2007



Pdf of Δ𝐺= cond. 

loss

Same game on real data



due to transients

• Generator

• Sink Cut at 0

Brittain: high-voltage power transmission grid

Simonsen et al. PRL 2008



Shekman et al. Chaos, Solitons and Fractals, 2016



Buldyrev et al. Nature 2010

Networks are coupled: Energy supply, ICT, health 

service etc. 

Modeling blackout in Italy: Interplay btw. Power grid and 

computer network needed for maintaining.



Coupled interdependent networks (Buldyrev et al. 

Nature 2010). Two kinds of links: Connection, 

dependency. The model: 

Nodes not belonging to the giant component are sequentially 

removed. Analytical results for one-to-one dependency link.

Dependency link



Cascading failures on two interdependent square 

lattices. 𝑃∞ is the relative size of the largest 

avalanche. For comparison, 𝑃∞ for simple square 

lattice site percolation is also shown. First order 

transition: Cascading collapse Wei Li et al. PRL 2012



Let us consider a pair of square lattices of size 𝑁 with 

random  dependency links resulting in a one-to-one 

relationship. Let the initial dilution be 𝑞 = 1 − 𝑝. Since 

we ignore everything but the giant component, the 

remaining number of nodes is 𝑁𝑃∞ 𝑝 . Thus the other 

lattice will be diluted by 𝑞1 = 1 − 𝑝1 = 1 − 𝑃∞ 𝑝 . This 

is projected back to the first network. 
The remaining density in 

the first step is  𝑝1 = 𝑃∞ 𝑝
In the second step we 

have to correct for the 

original dilution:

𝑝2 = 𝑝𝑃∞ 𝑝1 . Introducing 𝑝0 = 𝑝 we have for the 𝑖-th

step: 𝑝𝑖 =
𝑝0

𝑝1

𝑝1

𝑝2

𝑝2

𝑝3
…

𝑝𝑖−2

𝑝𝑖−1
𝑃∞ 𝑝𝑖−1 =

𝑝0

𝑝𝑖−1
𝑃∞ 𝑝𝑖−1



𝑝𝑖 =
𝑝

𝑝𝑖−1
𝑃∞ 𝑝𝑖−1 leading 

asymptotically to the 

equation 𝑥 = 𝑝𝑃∞(𝑥) . We 

know 𝑃∞(𝑥) only 

numerically but to high 

accuracy. Graphical 

solution:

Wei Li et al. PRL 2012

𝑝𝑐 normal = 0.59274
𝑝𝑐 interdep = 0.6827

𝑃∞ 𝑝𝑐 interdep =

0.602
For ER network exact:

Buldyrev et al. Nature 2010

The last point with solution.



Result: Enormous sensitivity to the ratio p of initially 

removed nodes: “first order” transition, jump in     for 

N  ∞. Note that transition is there for SF!  It is 

getting first order for 𝑁 → ∞.

P∞



Really first order? 

Indeed, the order parameter (𝑃∞) is discontinuous.

But: There is scaling at 𝑝𝑐!

𝑃∞ =  
0 𝑖𝑓 𝑝 < 𝑝𝑐

𝑚0 + 𝑟(𝑝 − 𝑝𝑐)
𝛽 𝑖𝑓 𝑝 ≥ 𝑝𝑐

There is “nothing” on the 

other side of the transition:

Absorbing phase

Two (coupled) critical 

phenomena

- Order parameter

- Avalanches

Accordingly: Two sets of exponents Lee et al. PRE 2016



One is (as usual) related to the order parameter:

𝛽 describes how it changes at 𝑝𝑐, 𝛾 is the exponent of the 

fluctuations of 𝑃∞ and 𝜈 can be defined through finite size 

scaling. 

In ordinary percolation an equivalent formulation can be given 

through the scaling of clusters.

Here not! All finite clusters are of size 1 or 2.

But the avalanches scale near 𝑝𝑐. Two divergent scales!

Simulations can be carried out using the efficient method by the 

Kahng group (SNU). 

Lee et al. PRE 2016



Usual relationships like 𝛽 =
𝜏−1

𝜎
or 𝛾 =

2−𝜏

𝜎
do not hold.

However, exponents are not unrelated!

Sum rule: A site can either belong to the giant mutually 

connected component or it has been eliminate by one 

of the avalanches: 1 = 𝑃∞ 𝑝 +  
𝑝

1
 𝑠 𝑠𝑝𝑠 𝑝′ 𝑑𝑝′ where 

𝑝𝑠 𝑝 is the number of avalanche of size 𝑠 generated 

between (𝑝, 𝑝 + 𝑑𝑝). 

This leads to  
2−𝜏

𝜎
= 1 − 𝛽

Furthermore, 𝛽 = 1/2 as 

it is clear form the  deter-

mination of the critical point.

Lee et al. PRE 2016



Many examples: k-core percolation, extended epidemic 

process, threshold model, etc.

Mechanism of hybrid percolation transition (ER):

Ordinary percolation at criticality: Critical branching process. 

Here 2 states after contact with “infected” node: Infected or 

weakened.

The infected constitute a critical branching tree.

Due to finiteness of the sample, there is a characteristic time 

(𝑂(𝑁1/3)) that a weakened node meats an infected  this 

pushes the process into the supercritical regime  breakdown

Lee et al. 2017





𝑡𝑁−1/3

𝑃
𝑡
𝑁

1
/3

Prob. that large loop at 𝑡

Average and sample to 

sample var. of the 

evolution of the OP

Zhou et al 2014

Lee et al. 2017



Spreading can be good (innovations) or bad (disease, 

cascading failures). If bad, we want to hinder. 

Simple epidemic models: spreading depends largely 

on the underlying network. E.g., SIR model epidemic 

threshold 
𝜇

𝛽
< 𝜅 − 1, with 𝜅 =

𝑘2

𝑘
inhomogeneity ratio

For scale free networks with 𝛾 ≤ 3 always spreading!

Hubs are good spreaders. 

Immunization: Random vaccination does not work.

Vaccinate the hubs!

How to know? Needs global info.

As prob. of having a neighbor with degree 𝑘 is 𝑘𝑝𝑘/𝑧
(my friends are more popular than I am): Vaccinate 

the contact persons of randomly selected ones.



Idea: Cut some links before 

failure escalates.

Model: Load=betweennes

centrality

Network: Scale free

4 suggestions:

After first step in the cascade 

eliminate ratio 𝑓 of nodes, where

1. Difference between carried 

and generated load is 

minimum

2. Closeness centrality is min. 

(periphery nodes)

3. Load is smallest

4. Degree is smallest 

A.L. Motter PRL 2004



𝐺: Remaining

fraction

a) ∗ no defense; open circle, square, triangle, diamond 

correspond to strategies 1,2,3,4, respectively at 𝑓max

b) Dependence on 𝑓

𝑓max

A.L. Motter PRL 2004



Different strategies: 

1. Strengthen high degree nodes.

Schneider et al. Sci. Rep. 2013



2. Healing

There is a critical  

healing prob. 

above which 

second order 

transition

Stippinger et al. Physica 2014



• Random failures can be treated within percolation 

theory. Scale free networks are extremely resilient 

against random failures

• If hubs are attacked intentionally, scale free 

networks become vulnerable

• Cascading failures may lead to catastrophic 

breakdown even in scale free networks 



Homework

Take the configuration with 𝑁 = 10000 nodes and 

degree distribution

𝑃 𝑘 =
𝑘−𝛾

ζ 𝛾
, where 𝛾 = 2.2 and 𝛾 = 2.9,

where ζ 𝛾 is the Riemann zeta function.

Make a statistics about the systems’ threshold of the 

collapse of the giant component with 

a) random failures (random node removal)

c) intentional attacks (removal according to the 

degree sequence, starting with highest)

Compare the systems with 𝛾 = 2.2 and 𝛾 = 2.9


