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1lity of networks

ms have many units, components, with
Interactions, which all can break

ess: Complexity causes vulnerability

1ere must be mechanisms to make complex
robust — otherwise we could not observe

Qem.
R0bustness should be reflected in the networks
deduced from complex systems.



lity of networks

work (nodes or links) break down,
moved — and the networks still

efinition of functioning: The survival of the
onent.

Elements are removed In a vicious/efficient manner to
cause most harm/effect.



them

randomly — the
same theory can

sites at random
be applied
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) fallure case Is a percolation problem on
Work (site or bond €< -> node or link)

2ercolation (recapitulation)




Percolation

P. IS the relative
weight or density of
the Infinite cluster or
glant component.

occupation/activation

fallure/removal



Percolation

Site percolation Bond percolation
Wrong nodes removed Broken links removed




Percolation
Already mentioned results:

1. Erdos-Renyi graph has a phase transition at <k> = 1:
<k><1 no giant component
<k>> 1 there Is a giant component

7 N

» > .".I/ . » . .
av-deg =1.18 .« / A% de_g.‘lF 0.99
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Bond percolation: links are removed until the giant
component falls apart. _ _ NI2
pP.= = = —0
Note that N(N-1)/2 N(N-1)/2 N-1




Percolation

2. Configuration model (random network with arbitrary
degree distribution):

Molloy-Reed criterion: There Iis giant component if

(kK*)-2(k)>0

This suggests that
for small enough y

breaking the giant
component will be
difficult.

Newman



Random failure

Based on the MR criterion, we can introduce a
parameter, the inhomogeneity ratio, indicating on
which side of the transition we are:

K>2. a giant cluster exists

K<Z2: many disconnected clusters

<k? >

K =2
<k >

Critical point: k = 2

First example: ER graph. A randomly diluted ER graph
IS also an ER graph. Degrees: Poisson-distributed




landom failure

egree distributions?

ration model.

a node changes degrees of the
nodes and the degree distribution.

the fraction of nodes removed f =1 — p.



Random failure

The probability that an originally k-degree node
pecomes a k' < k degree node Is a binomial
distrioution (remove k — k’nodes from k at random) :

The probability that we chose a node with k nodes is P(k)
Thus the resulting new degree distribution will be

e K . .
P'(k') = Z.P(k)(k'j f - f)

How do the moments change? (We need them for
the MR criterion. )

Similar for <k?>; k=0 k=K




Random failure
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K’ -1-> n, k -1-> m substitution)




Random failure

Similarly for the second moment:
<k®>=(-f) <k*>+f(1-f)<k>

Can be derived in a similar manner as <k™>; using
e <k > =<k'(k'-1) >, +<k'>,

Now we can apply the RM criterion to the new degree
distributions to determine the critical value of f = (1—p)

<k >,
=A-f)x+ f,=28Wiia
<k'>,

Cohen et al., Phys. Rev. Lett. 85, 4626 (2000)



Random failure

If'a random network (configuration nw) with original
degree distribution P(k) suffers from failures, which
destroy the nodes randomly with probability f, the

network will be resilient until ., 1.e., up to that point
the giant component will exist and the network can

(hopefully) fulfill its function.

Cohen et al., Phys. Rev. Lett. 85, 4626 (2000)



Random failure
Many networks have power law degree distributions.

Let us consider the configuration model with power
law distribution of degrees. Only 1 <y <y.Is

Interesting (existence of giant component).

< > Zk P(k) ka‘7 In a infinite system the
summation goes to «

Moments exist only if m < y-1.
If y= 3, the second moment diverges.

Cohen et al., Phys. Rev. Lett. 85, 4626 (2000)

Fory= 3 the critical value f. = 1, I.e., In an infinite system
all finite fractions of the nodes have to be removed to
destroy the giant component!



Random failure

sfsystem size

Cohen et al., Phys. Rev. Lett. 85, 4626 (2000)



e ] .
Random failure

Ivations used massively the random
figuration model, the lesson seems to
| networks!

are but important hubs assure
/ival of the giant component and this is present
wer law degree distribution.

| networks are finite, there we cannot expect
values close to it, if the network is large.



Random failure

Empirical study: the

Internet
Internet
Router level map, N=228,263; y=2.1+0.1, x=28
9

AS level map, N= 11,164; y=2.1+0.1, =264
9

Albert, Jeong, Barabasi, Nature 406 378 (2000)



Random failure

ce of scale free complex networks:
of their ubiquity.

ex syste ve to develop mechanisms to
themselves against random failures. The scale
ology Is one of them.

ustness Is not always advantageous:

op the spreading of an infection (e.q.,
computer virus) on a scale free network? Isolating the
disease by random removal of nodes (e.g, vaccination)
IS not a good strategy.



T .
Intentional attacks

Ss of scale free networks Is due to the
difficult to hit by chance.

IS not random but vicious:
ody (e.g, a terrorist) wants to paralize the

geted attack should go against the hubs! We
assume that the terrorist knows the network and
destroys the a fraction of the highest connectivity
nodes.

A more peaceful interpretation: How to do efficient
vaccination?



Intentional attacks

The analytical approach is based on the fact that this
time a fraction f of the hubs Is removed instead of
nodes at random.

The calculations show that the situation changes
dramatically: There will always be a threshold and its
value iIs rather low. S



Intentional attacks

Empirical comparison between random failure and
Intentional attack: Internet




Intentional attacks

Topological Q O
error tolerance

For scale free conf.
model (implicit eq)

Cohen et al, 2001

Scale-free networks are more error tolerant, but also
more vulnerable to attacks



Intentional attacks

ree networks show the same dual behavior

* blue squares: random failure
* red circles: targeted attack

e open symbols: P,

* filled symbols: |
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* break down Iif 5% of the nodes are eliminated selectively (always
the highest degree node)

* resilient to the random failure of 50% of the nodes.

Similar results have been obtained for metabolic networks and
food webs.

All this Is static!



cading breakdown

erall tolerance against random
ystems show sometimes extreme

e are nonlinear dynamic systems some
ay trigger further ones leading to collapse

LA 11 LR 1

“Avalanches”, “cascading failures”, “domino effect”
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ascading Failures




Cascading Failures

Network running normally

Wikipedia



Origin

A 3,500 MW power surge (towardsI nta
affected the transmission grid at 4:1
EDT. (Aug-14-2003)

the blackout the blackout



Cascading Failures

Ibution of blackouts

P(S)~S % 1<a<?2

g
E
8 :
8. Probability of energy m Source Exponent Quantit
unserved during North ] y
American blackouts North America 2.0 Power
1984 to 1998.
Sweden 1.6 Energy
Norway 1.7 Power
New Zealand 1.6 Energy
energy unserved (MWh) China 18 Energy

I. Dobson, B. A. Carreras, V. E. Lynch, D. E. Newman, CHAOS 17, 026103 (2007)



self-organized criticality

Bak (1987): Why Is power-law so ubiquitous?
The critical state emerges as a result of self-
)rganization!
ample: sandpile (more language than concrete
~ physical example)

Hesse and gross, Front. Syst. Neurosci, 2014

-~

| | Avalanche
Addition of Avalanche L
sand grains: = Critical slope < occurrence: pOWEI’ law
slope increases slope decreases (not for Sand_ . )

Bak, Tang, Wiesenfeld PRL (1987)



delf-organized criticality

Per Bak’s sand pile
avalanches in a rice pile

V. Frette et al. Nature 1996



SOC Model

1g with a flat surface Z(x,y) = 0 for all x

Add a gra-i‘n of sand: Z(x,y) =2Z(x,y)+1.
Start avalanche if Z(x,y) > Z.:

Z(X! y) :Z(X’ y)_4
Z(xxly)=Z(xxly)+1 C

Z(X,yx)=2Z(x,yx1)+1

At the boundary “grains” leave the system assuring
constant density on the average



SOC-model

e g
= £
T o
= o ©
c5 s
Z o ®

Self-organized criticality

statistics

power law.

linearity
due to

feedback
causes

power law

P- Bak 1988



SOC-model

P. Grassbergerg’s interpretation



Bak, Tang, Wiesenfeld PRL (1987)

Shapes of effected regions Size distribution of
avalanches

Similar results for the Manna model, where 2 “grains”
are toppled irrespective of the dimension of the lattice

S. S. Manna, J. Phys. A (1991)



SOC

IsSm leading to SOC: Let us play the

D with periodic BC (a ring of size L)
onstant density p. Grains are conserved.

1 the system goes to an absorbing state: at
rity nothing moves.

there Is no absorbing state: There will always
with z = z, = 2

It can be shown that there is a non-trivial p, < 1 such
that even for p. < p there is no absorbing stationary
state in the TDL.

This is a continuous phase transition with the density of
active sites (i.e., sites with z > 2) as order parameter.




e use open BC, I.e., grains can leave the
we add grains if avalanches stop?

m Is gets frozen. Then new grains
dded.
- the activity persists until grains flow out of
tem.

onseguence, the system drives itself to the
cr

There are 2 important elements:
- Conservation (grains do not disappear in the bulk)
- Separation of time scales (new grain comes if

system is at rest)
Dickman et al. Braz. J. Phys. 2000
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Finite size scaling

Dickman et al. Braz. J. Phys. 2000

lattice
simple chain
rope ladder
nnn chain
Futatsubishi

square

jagged

Archimedes

nc diagonal square
triangular
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Mitsubishi

SC
BCC
BCCN
FCC
FCCN

Huynh, Pruessner PRE, 2012
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Role of conservation:

Let R be the prob. that
during toppling a
particle vanishes.

P(s)~s "exp(—s/s™)

With

0 200 400 600 800 1200
S

Cumulative distribution

Manna et al. J. Stat.Phys. 1990



SOC on networks

Generalization of BTW to uncorrelated scale free
networks: node-dependent thresholds (= degree k)
P(k)~k™Y

Using theory of branching processes the SNU
group could calculate the exponents

simul theor

. : oo 1.52(1)
Mean field, independent of y EEXEREZE)
3.0% 1.66(2)

2.8 1.693) 1.56

26 1.75(4) 163

y-dependent exponents [REEERHCERNE
22 1.959) 1.83

201 2.098) 2.0




Cascading Failures
Start: loads S = betweenness = # shortest paths

Capacities: (1+a)S After a failure, load has to
Initially the system works Dbe redistributed among
fine the neighbors—> avalanche

Simulation of the model networks. G (not damaged part)
VS a and the initiator. * max load, o: hub, [-]: random

10} ¢-e

o I Regular network
0.6 17 k =3

0.4 / Scale free nw
(k) =3,y =3

G

0.2

%0 01 02z 03 04 05

0.0

Motter, Lai PRE (2002)



" Blackouts

rrent (random fuse model)

(power grid) made up of resistors
| random point and a drain at
. Fix voltage.

 Kirchoff’s egs,

hresholds at (1 + a)i

: ve a link at random,

. Solve Kirchoff

5. Remove links where current exceeds threshold
6. Go to 3 until no more bad links found

Bakke et al. Europhys. Lett. 2007



Blackouts

Pdf of AG= cond.
oSS

* North America
= Norway

—p~ AG"’
£ -1.65




Dynamic effect dueto transients

Brlttaln hlgh-voltage power transmission grid
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Networks of Networks

Com pressor Station

.
il Sopely o | S Electnc Power

~__Supply
Communications e = "“,- =

/ | Substaion

/ |

*-"u

Transpprtation

Emergency

Banking &
Finance

ATR Government Services

Legislative

Pension/Service
Payments Treasury Dept

Shekman et al. Chaos, Solitons and Fractals, 2016



gascading Failures: Coupled

Networks

Networks are coupled: Energy supply, ICT, health
service etc.

Modeling blackout in Italy: Interplay btw. Power grid and
computer network needed for maintaining.

Buldyrev et al. Nature 2010




Cascading Failures

Interdependent networks (Buldyrev et al.
2010). Two kinds of links: Connection,
‘dependency. The model:

Dependency link

Nodes not belonging to the giant component are sequentially
removed. Analytical results for one-to-one dependency link.



Interdependent networks

— simple percolation
- - heory

o simulation

Cascading failures on two interdependent square
lattices. P, IS the relative size of the largest
avalanche. For comparison, P, for simple square
lattice site percolation Is also shown. First order
transition: Cascading collapse Wei Li et al. PRL 2012



Ihe threshold
Let us consider a pair of square lattices of size N with

random dependency links resulting in a one-to-one
relationship. Let the initial dilution be g = 1 — p. Since
We ignore everything but the giant component, the
remaining number of nodes is NP, (p). Thus the other
lattice will be diluted by gy, =1—p, =1—P,(p). This
IS projected back to the first network.
The remaining density In
the first step is p; = P, (p)
In the second step we
have to correct for the
original dilution:

p; = pPy(p1). Introducing po = p we have for the i-th

PoP1DP2 Di-2 _Po
step: — 2. — P,
P. p;i = S T (pi—1) = - (pi-1)




The threshold
P, (p;_,) leading

Pi = Pi-1

asymptotically to the _
equation x = \/pP,(x) . We
kKnow P, (x) only
numerically but to high

. .
accuracy. Graphical |
solution: s 06 07 08 09
p.(normal) = 0.59274 -
p.(interdep) = 0.6827 The last point with solution.
P, (pc(interdep)) =

0.602

For ER network exact:

= [N — —1=2_4 4/(k Wei Li et al. PRL 2012
[ < >ﬂ f)] 0> /< ) Buldyrev et al. Nature 2010




Cascading Failures

h .1.{] :m__.!. ettt

Result: Enormous sensitivity to the ratio p of initially
removed nodes: “first order” transition, jump in P.. for
N = <. Note that transition is there for SF! Itis
getting first order for N — oo,



Hybrid phase transition
Really first order?

Indeed, the order parameter (P,) Is discontinuous.
But: There Is scaling at p,!

( ;
0if p <pc
mo +7( — )’ if p =P

There Is “nothing” on the
other side of the transition:
Absorbing phase

Two (coupled) critical
phenomena

- Order parameter

- Avalanches
Accordingly: Two sets of exponents Lee et al. PRE 2016

Py =




Hybrid phase transition

One Is (as usual) related to the order parameter:

[ describes how It changes at p., v Is the exponent of the
fluctuations of P, and v can be defined through finite size
scaling.

In ordinary percolation an equivalent formulation can be given
through the scaling of clusters.

Here not! All finite clusters are of size 1 or 2.

But the avalanches scale near p.. Two divergent scales!
Simulations can be carried out using the efficient method by the

ordinary ER 1
0.5£0.01 1.05 £ 0.05 2.1 +0.02
- 1.5 £0.01 1.0£0.01 0.5£0.01 1.85 £ 0.02
ordinary 2D 0.139 1.055 0.286 2.389 2.667
0.53 £0.02 - 1.35+0.10 2.2+0.20
- 1.59 = 0.02 . .01 0.5 £0.05 2.1+0.2

Lee et al. PRE 2016

interdependent ER

interdependent 2D




Hybrid phase transition

Usual relationships like g = = or y = 2== do not hold.

o o)
However, exponents are not unrelated!

Sum rule: A site can either belong to the giant mutually
connected component or it has been eliminate by one

of the avalanches: 1 = P (p) + fpl > Sps(p)dp’ where

p<(p) IS the number of avalanche of size s generated
between (p,p + dp). _—_

Thisleadsto 2=2=1-8 EN P

o

Furthermore, § = 1/2 as
It IS clear form the deter-
mination of the critical point.

%5 06 07 08 09
Lee et al. PRE 2016 X. X



/ rid percolation transition

. k-core percolation, extended epidemic
model, etc.

olation transition (ER):

| percolation at criticality: Critical branching process.
es after contact with “infected” node: Infected or
.d constitute a critical branching tree.

‘Due to finiteness of the sample, there is a characteristic time

(O(N1/?)) that a weakened node meats an infected = this
pushes the process into the supercritical regime - breakdown

Lee et al. 2017



Hybrid percolation transtition




\

‘Branching process *

!

T

Average and sample to
sample var. of the
evolution of the OP

Prob. that large loop at t

Lee et al. 2017



Stopping spreading

can be good (innovations) or bad (disease,
llures). If bad, we want to hinder.

epi IC models: spreading depends largely
he underlying network. E.g., SIR model epidemic

2
old % <k—1,withk = <<kT>> Inhomogeneity ratio

cale free networks with y < 3 always spreading!
re good spreaders.

Immunization: Random vaccination does not work.
Vaccinate the hubs!

How to know? Needs global info.

As prob. of having a neighbor with degree k is kp;, /z
(my friends are more popular than I am): Vaccinate
the contact persons of randomly selected ones.



Stopping cascades

ldea: Cut some links before

fallure escalates.

Model: Load=betweennes

centrality

Network: Scale free

4 suggestions:

After first step in the cascade

eliminate ratio f of nodes, where

1. Difference between carried
and generated load is
minimum

2. Closeness Centrality IS min. Network running normally

(periphery nodes)

Load is smallest

Degree is smallest

> W

A.L. Motter PRL 2004



G: Remaining
fraction Jmax

a) * no defense; open circle, square, triangle, diamond
correspond to strategies 1,2,3,4, respectively at f,4x

b) Dependence on f
A.L. Motter PRL 2004



Reducing the effect for
interdependent networks

Different strategies:
1. Strengthen high degree nodes.

random
A degree

- — - B degree :
- =+ = A+B degree |:

Schneider et al. Sci. Rep. 2013



2. Healing

Before
attack

New link
prob.w

There iIs a critical
healing prob.
above which
second order
transition

healing prob.

=
o0

o
o

=
N

1;00 (p): frac. of alive nodes
b

|
[
[
[
|
[ I "
I
] I L
|
|
|
1

0.0 A SETH IS B EN I |
0.0 01 02 03 04 05 06 07 08 09 1.0

p: fraction nodes not attacked externally

Stippinger et al. Physica 2014



Summary

S can be treated within percolation
e networks are extremely resilient

S are attacke entionally, scale free
rks become vulnerable
Ing failures may lead to catastrophic
down even Iin scale free networks



rk
figuration with N = 10000 nodes and
tion

y = 2.2and y = 2.9,

e ((y) Is the Riemann zeta function.
a statistics about the systems’ threshold of the
e of the giant component with
dom failures (random node removal)
~ C) Intentional attacks (removal according to the
degree sequence, starting with highest)
Compare the systems with y = 2.2andy = 2.9



