NTRC ODUCTION TO

RENY! AND WATTS-STROGATZ GRAPHS



Addendum: Projection of bipartite (two

mode) networks
,E), where |U| = N and |V| = M. As there are

N + M) joint adjacencyumatrix A‘(/U, V) will be:
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Projection to V

Projection onto U:
EVIUASV UAD)
=AU, V)A(V,U)

_ Onto V:

AV) =AWV, A" (V,U) =

AV, U)AU,V)

AWy = ) AU VYAV, Uy
k

eNeNoileo) [ S o)
O O OEEEES L o O

With multiplicities!
Aii = # links to U ati
A;j = # connections between

iandj (i #J)

Enough: the NXM (or MXN) matrix



eling networks

dvances: we a) get access to b)

d networks?

asily generate regular networks (e.g.,
ut in real networks there is usually a large
randomness.

ake the opposite view: Generate the most random
network!



rdos-Renyi model

anything else than the number N of
r L of links, the simplest thing to

N =10, L=8 Paul (Pal) Erdés Alfréd Rényi



Erdos-Renyi model

This Is one realization of the (N,L) E-R model.
The links can be put in many different ways. This
defines an the E-R model.

Probabilistic definition:

2 2

Nj:N(N -1

# possible links:| .. :[

probability of having a link between any two nodes:

p=(L)/ N(N-1) _ 2(L)
NINEMIThis is the G(N, p) model



Erdos-Renyi model

N =12
p =1/6

L =11"6=66 <L>=11

@
@
@
@ @
L=8

L=12 L=11



Erdos-Renyi model

The probability of one particular configuration G

P(G(N, D, L)) =p (- p)™ " KR independence




Erdos-Renyi model

can we put L linkson L__ places?

max

nbinatorics)

e have a sequence of L links, then the first can
uton L__ places, the secondon L__ -1, the
don L. —2,...thelast on, leading to

Lmax (Lmax B 1)(Lmax B 2) ' (Lmax -L +1)

different possibilities. However, the sequence does
not matter, thus we have to divide the result by the
number of different sequences, which is

Ix2x3x---x L = LI




Erdos-Renyi model

How many ways can we put L linkson L_ ., places?
The result is:

I—max(l—max _1)(Lmax_2)”'(|—max_|—+1) . I—maxl [Lmaxj

L -0 L

max

The probability of finding a graph with exactly L links:




Erdos-Renyi model
We show that

d
pd—(p+q)LW = PLa
p




Lmax — d d Lmax —
ZLZ(L ]quLW "=p—p Z[L ijqL"““ "=

dp  dp T

d d L C Loy —1
_I_ max — L _|_ max —
p—dp p—dp(p q) p—dp pL, .. (P+Q)
oL +p°L . (L

max )

MmaX

52 = <L2> B <L>2 = meax +p2Lmax (Lmax - 1) - szzmax =

MmaX

L..xp(1-p)



Erdos-Renyi model
P(k) = (Nk_l] (1 )

Select k probability
nodes from probability of
N-1 of missing N-
having k 1-k
edges edges
<k>=p(N-1)

1/2
J1-p 1 } 1

p (N-1)] —(N-D2
As the network size increases, the distribution becomes

more and more narrow — the degree of a node is with high
probability in the vicinity of <k>.



Probability generating function

Given adistribution P(i) with i = 0,1,2 ... the generating
function is defined as G (x) = }.; P(i)x".
P(i) = 1di6)

! dxt

thus G (x) is equivalent to P(i).

x=0

= Gpoisson(¥; 1)




Erdos-Renyi model

Approximation to the binomial distribution for large N
and fixed <k> (meaning small p).

. N-1 k (N-1)—k
P(k) = o |P 1-p) —

+ p=05and n=20
* p=07 and n=20
* p=05 and n=40

(=] (]
oooooooooooooooooooooooooooooo

et )
<k*®>= p(L- p)(N -1) + p°(N -1)° <k >=<k > (1+ < k >)

Sk:(<k2 >_<k>2)l/2 :<k>1/

S, =(<k*>-<k>*)"" =[p(l- p)(N -DI"



Erdos-Renyi model

loNn IS harrow:

degree much larger than <k> is



Erdos-Rényi model
to sociological research, for a typical

Ind an individual with degree

at N ~10°, the chance of finding an individual
00 acquaintances is so tiny that such nodes
are lly non-existent in a random society.

—a random society would consist of mainly average
iIndividuals, with everyone with roughly the same
number of friends.

- It would lack outliers, individuals that are either
highly popular or recluse.



Erdos-Renyi model

ER fails!

e absolute random limit.

ties can be calculéted — good playground



Erdoes-Renyl model

R
:

Sharp distribution




Erdos-Renyi model

Clustering coefficient C

The prob. that two neighbors are neighbors of
each other. Since in the ER model the probabillity
of a link is always p, we have

In (large) social networks there are plenty of triangles!

(Another problem with ER!)



Erdées-Renyl model
Percolation transition (in a complete graph)
If p IS very small — only small isolates
If p IS large — giant component (+ isolates)
Where Is the transition?
U prob. that a randomly chosen node does NOT

pelong to the giant component. (Either not connected
Or connected to a node not connected to the giant)

Tree property!
Giant comp.
near crit. point

N -1

Inu=(N-1) In{l— k) (1—u)} ~—(k)l-u) u= a~(k)-v)




Is the prob. that a node
belongs to the giant comp.

At transition P_= 0
k>C — 1 Newmann book




At transition P,= 0 and <k>_=1
How does P. depend on € = <k> - <k>_ =<k> - 17

<k>—1:<k>%y:Pw~gﬂ with f=1




Erdés-Renyi model
ow and for small < k > —1 there are no loops.

tute the network nodes such that they all
ve the degree <k> (even if this is not an integer). The
rage # nodes at (geodesic) distance s is <k>,

For <k> < 1 no giant
component. N = <k>*

For <k> > 1 there Is giant
component.



Erdés-Renyi model

hs proportional to s

The length of the average
distance grows only
logarithmically with N




6s-Renyi model

e n limit)

stering coefficie
on transition at <k>=1
orld properties (in the giant component)

This Is the model. What about reality?



Erdées-Renyl model

AS gquantitative data about real networks become available,
We can compare their topology with the predictions of
random graph theory. Note that once we have N and <k>
for an ER random network, from it we can derive every
measurable property. Indeed, we have:

Average distance: cd >y 09N
rand |0g<k>

Clustering Coefficient:

k
<> < k>

Degree Distribution: IR LI A ke WA




Erdées-Renyi model
ance.

Predictio

) s, logN - Food web

= Grana ”|Og<k> - Neural network
- Collaboration networks
- WWW

- Metabolic networks

- Internet
dom graphs.

[I All small worlds!

orks have short
distanc
like ER ra




Erdos-Renyl model
Clustering coefficient

) Wiood wekbs
C..4 Underestimates the *+ [ neural natwork
. . . = [l meatabolic networks
clustering coefficient of % powergrid
real networks ::::nllal:nratbn networks

Barabasi



Erdées-Renyl model
Degree distribution

P,a(k)@Cyp"(1-p)"™"

(a)Internet;

(b) Movie Actors;
(c)Coauthorship,
high energy

physics;
(d) Coauthorship,
neuroscience

1D-l :_I'I_|_“.u.| P rrres | | =il et
1w 1w 1w 1w’
k

Data follow P(k) > kY

Barabasi



PDegree distribution

INTERNET r SCIENCE i . PROTEIN
: COLLABORATION I INTERACTIONS

Green line: Poisson




Erdées-Renyl model

By comparing the measures as obtained from the data and
from the model, it becomes clear that the model is far from
reality. No real system is properly described by it.

Average distance: <d_ > log v é
log(k)

Clustering Coefficient: (k)

rand - p -

N

Degree Distribution: 3 () OCEpra-p)
ran N-

It seems to capture the small world property!

Barabasi



me further features
~log N if (k) <1 subcritical

~N2/3jf (k) =1 critical

Vif (k) >1  supercritical

y that a randomly selected node belongs to
t component - O for (k) <1 when N — oo,

here Is one and only one largest component (giant
component) (k) = 1 when N — oo,



Some further features

It'IS possible to calculate the critical N-dependence of
(k) below which (|subgraph|) - 0 when N — oo,

1 12 13 -1/5 1/3 1/2

A A S X R

If ©((k)) < N¢ then (|subgraph|)=> 0;
if ©((k)) > NS then (|subgraph|)> 0 when N — oo.



Finite components

Prob. that a node belongs to component of size s: pq
Finite components are trees:

P(s|k)—z Zﬂps (s—lz )

Sk J=



FInite components




nite components



Some further features

1e average size of small (not giant)
omponents gets independent of N.
e average size y of finite clusters is:

_ (sps) 1

X = - (for derivation see Newman'’s book)
(ps) 1 —(k)+ (k)Py

where p. IS the prob. that a randomly chosen node

belongs to a finite component of size s, and P, IS

the relative weight of the giant component.

As P, vanishes as ¢ = 1 — (k), we have
¥~&Vwthy =1.



summary

0 degree distribution (Poisson for large N)
)as N - oo.

lation transition at (k) =1, =1,y = 1.
Small world for (k) > 1 due to exponential

- graph structure.

- Basic reference model



Small world

A fascinating game grew out of this discussion. One of us
suggested performing the following experiment to prove that the
population of the Earth is closer together now than they have
ever been before. We should select any person from the 1.5

billion inhabitants of the Earth — anyone, anywhere at all. He bet
us that, using no more than five individuals, one of whom is a

personal acquaintance, he could contact the selected individual
using nothing except the network of personal acquaintances. For
example, “Look, you know Mr. X.Y., please ask him to contact
his friend Mr. Q.Z., whom he knows, and so forth.”

I proposed a more difficult problem: to find a chain of contacts Frigyes Karinthy:
linking myself with an anonymous riveter at the Ford Motor Chains (1929)

Company — and I accomplished it in four steps. The worker
knows his foreman, who knows Mr. Ford himself, who, in tumn,
is on good terms with the director general of the Hearst
publishing empire. I had a close friend, Mr. Arpad Pasztor, who
had recently struck up an acquaintance with the director of
Hearst publishing. It would take but one word to my friend to
send a cable to the general director of Hearst asking him to
contact Ford who could in turn contact the foreman, who could
then contact the riveter, who could then assemble a new
automobile for me, should I need one.




S EURYe]gle
tifically:
experiment

ave letters addressed to a Boston broker to people
Midwest and asked them to hand them to

Intees such that using only personal contacts the
S should find the broker as soon as possible.
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Small world

the Milgram game:

AME TO THE ROSTER AT THE BOTTOM OF THIS
person who receives this letter will know who it came

ETACH ONE POSTCARD. FILL ITAND RETURN IT TO HARVARD
TY. No stamp is needed. The postcard is very important. It allows us
K of the progress of the folder as it moves toward the target person.

YOU KNOW THE TARGET PERSON ON A PERSONAL BASIS,
OLDER DIRECTLY TO HIM (HER). Do this only if you have
previously met the target person and know each other on a first name basis.

4. IF YOU DO NOT KNOW THE TARGET PERSON ON A PERSONAL
BASIS, DO NOT TRY TO CONTACT HIM DIRECTLY. INSTEAD, MAIL THIS
FOLDER (POST CARDS AND ALL) TO APERSONAL ACQUAINTANCE WHO
IS MORE LIKELY THAN YOU TO KNOW THE TARGET PERSON. You may
send the folder to a friend, relative or acquaintance, but it must be someone
you know on a first name basis.



New Hampshire
Vermont
s | .' Massachusetls Mai,nfv'
Minnesola ' "0 \

Wisconsiry//
South Dakota J L i X
{ Michigan . \
E el . \Rhode Island
A\ Pennsylvania, :
Nebraska lowa y | o
Ohio ¢ X
- linois Indiana ¢ \NowJorso
\\ Delawar
Kansas Missoun Virginia Marylang
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Oklahoma Tennessee ;
Arkansas South

Carolina/

Alabama

Mississippi Georgia

Louisiana

*Florida\

Wikipedia



‘Small world

fraction reached the target person

1S of chain lengths (2-10), with an

bh

1Icobs”, a clothing merkant played a key role Iin
letters to the target

2ral scheme is that first geographic aspects
the search until the inner circle of the target



Small world

Enormous impact (see also:
John Guare’s play, Fred
Schepisi’'s film, Kevin Bacon
game, Erdos number)
Sixdegrees.com (1997-2001),
Facebook app,

LinkedIn etc

Donald A
&
-
|~

cattin

Dy

\_—/




D. Watts repeated the experiment on the
Internet 2003. More than 60,000 people
from 166 different countries were
approached Iin the experiment. Participants

were assigned one of 18 target people.
Task: contact a specific one

by sending email to people B
they already knew and
considered potentially
“closer" to the target. The >0
targets were chosen at 0
random, e.g., an Australian
policeman and a veterinarian
from Norway. 384 of 24,163
chains were completed with a
mean of 4.01, median 5-6.

‘n-‘ O\

1 2 3 4 5 6 7 8 9 10



Small world

'R
(IR <

Me

\Y[<
~ Viktor Orban
.. Obama

N



Small world

Ily chosen actor or ~
and Kevin Bacon such, that a link between two
a movie where the they played together.

th on a bipartite graph and you are looking

_ ortest one

Introduce the Bacon number B as the distance on
the projected graph of actors.

B=0 Kevin Bacon

B=1 Julia Roberts, Kevin Costner, Tom Hanks

B=2, Anouk Aimee, Leonardo DiCaprio,

B=3 Judit Pogany, Charles Chaplin (!)



mall world

racleofbacon.org/

Db: Internet Movie Database
.1mdb.com/

| could not find B>3, although Bacon is not that
amous (except of the game!) .

But in one step you are at a famous actor.



“ Small world

re scientific!

e and collaborating .

people in almostall Paul Erd6s (1913-1996)
athematics

In more than 1500

Collaborative distance from Erd6s on the bipartite
graph of mathematicians and papers defines the
Erd6és number.



Small world
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‘Small world

phis the
collaboration

=

., Paul Erdos (1913-1996)
ematicians do

all E
\verage IS 4. (There are
close to 10,000 with E=2) My E?

Microsoft collaboration path checker:
http://academic.research.microsoft.com/VisualExplorer



Small world

se examples that social networks are

I networks in nature and
Il average distance.

Y, M |
gy have also s
S include:
ALY
iIcal networks (genetic transcription,
%etabo _
Alir traffic network

etc.

Universality: Is there some common mechanism?



Small world

have small clustering!
ree distribution

egular lattices have absolutely narrow:

NN NN N NN/
AVAVAVAVAVAVAV
AN NNN NN
ANANN NN N Y
NNNNNNN
NN NVNN Y Y
NVVVVVY
<€ >

ki = 6 for all nodes (except
the boundaries)

Graph distances between
distant points in 2d Euclidan
sense go as L~N12

In d dimensions <d> ~ N1d >> |ogN

small world



Small world

t the ER model leads to the small world
iIcally) constant node degrees such
exponential network without loops!
ct, there are loops in the giant component, but
0 <k>=1 they are negligible.)

ere are a lot of loops in a social network! Friends
ds get often friends, If A writes a paper with both
B and C then there is high chance that B will write a
paper with C too etc.

ER has small clustering coefficient, while real (social)
netrworks have high!



Small world

Challenge: How to match these two properties: High
clustering AND small average distance.

NINININININN
AVAVAVAVAVAVAY.
AN NN
ANNNNNY
ANNNNNY
ANNNNNY c__ W 6 2
AVAVAVAVAVAVAY; " k(k-1)/2 3x5 5

Lattices can have high
clustering. E.g. here




mall world

small average distance (good)

average distance (bad)

know how to cure ER

Can we do something with the lattices?



s-Strogatz model

7/ Tl

uncan Watts  Steven Strogatz

ages), w
ow each
- high

Illages there are a few persons who
vel, know people from other villages etc. They
decrease the length of the paths.



w,_-.g 5-S trogatz model

_ S
oo

of the Imks P =2 1. ER graph
/ersion: Take the lattice and connect

Any high clustering lattice would do in any dimension.



Watts-Strogatz model

- o

Between the two red lines clustering is high and av.
distance low! Problem solved! (?)



Watts-Strogatz model

- 4

5\ 7
et g ! # J g J

‘,(-JV._:L"'. ‘= \'-\ r'.' { ! _l'-. L 4
.‘l- o T"- \‘g‘ ?: i l‘ y . ) 'y :
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.A.' LT \.71‘ _‘5 ) 'l ) w.ir .

."‘. T3 1 ] s "df "l L _s.' ‘| ';‘._'\ :'x A {i
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the \ trogatz model people
orm. They have more or less the same
Intances — only few of them have the
out of this boring world.

degree distribution of the nodes in the WS



Watts-Strogatz model

ribution: Added links form an ER NW with
original lattice has coordination number
or the distribiution of the total degree

shifted Poisson distribution.
Pk
“““||_
k

Sharply peaked, shifted Poisson




Watts-Strogatz model

- . - #triangles x3
tering coefficient: € = 5

sla M

e A-s on one side of the nodes, z = c¢/2.

thnewlink z—1new A-s. #A=)7_,(i—1) =
c (C

G-
3 with adding bridges to the c-ring: For every
edge In the ring we add a bridge with prob. p.
The expected # bridges s = Ncp/2, each can be put to
N(N — 1)/2 places - prob. that a pair of nodes is

: Ncp/2  c¢p _¢p - :
linked sy A The probability of creating a

triangle by a bridge is negligible for N — .

#connected triples
-S on a ring with ¢ = (k) and N nodes

/? C IS always even. It is enough to




ogatz model c¢=4rng
c(c — 1)/2triples in the

hich all survive.

es 2c new triples,

this way by

cp/2 =
r contribution comes from

nding at the same node.

are m such nodes at a vertex, m(m — 1)/2 new
triples are created. m has Poisson distribution with
mean cp (ER):

[E(m?) — E(m)] =

E(m?) — (E(m))” = E(m) + (E(m))°| =3 (cp)?

o cp (cp)? :
; éé@tnples

N =N |=




Watts-Strogatz model

c(/cC
#triangles x3 Nz(g—l)X:%

C - —-———— -
#connected triples NC(§_1)+chp+%(cp)2

N =1000,c = 4




Watts-Strogatz model
Handwaving argument for
diameter
First we ignore the further neigh-
bor links - unimportant for order
of magnitude estimation (and
would anyway shorten §y).

Op =2 We can approximate it by
the length of larges gap between
two neighboring bridge heads.

Without bridges 6, ~N. If we put the s bridges reqgularly,
I.e. with an angle of 2 /pN, the largest distance would
not depend on N ! (6r~N/(s/2) ~1/cp.This Is an
underestimation as due to randomness there will be
larger gaps.




Watts-Strogatz model

How to take randomness into account?

A further simplification: In the
model we go around the ring
and at every node we generate
a bridge with prob. p, which,
has another end possibly
shortening a gap. We ignore
that (and overestimate the

gaps).

What Is the expectation of the largest gap?
Sr(N)~E[max(A(N))].

First: P(A) = C(p)(1 — p)® with C(p) = 1/ 3N_o(1 — p)*



Watts-Strogatz model

at Is the expectation of the largest gap from
Infinite ring?

ontinuum limit 2P(A) = %e‘A/W
1-p)/p=E). > P(A<n)=1—e W

= maxA(N)

) = P(A< x)N = (1 — e‘x/W)N

creases with N. How? If we find a function f(N)

So th e distribution P[Xy — f(N)] converges to a limit
distribution: E[Xy] ~ f(N). Here: f(N) =1InN
P[Xy —In(N) < x] = P[Xy < x + In(N)]
N

—-X/wW
nl (1 9 e—(x/w+1n(N)))N - (1 - € ) N e—e—x/W

N _
5, (N)~In(N) Gumbel-d




Small world

L=652
0

ary of the WS model:

pines large clustering of some lattices with

ort average distance due to cross links

- Reflects some aspects of social networks
(communities with high clustering connected
by long distance links).

- It has a sharp degree distribution — in contrast %
with real world networks

] 7 [Td




Different routes to
small worldness

a) Exponential network, e.g., Cayley tree:
N.~(k — 1)%; while (d)~t

As ER is tree like and has sharp 5\:'::’75

P(k), it is in this category

p) Watts Strogatz: Bridges

Other route?

/
&

S
‘.'




jon in a small world

IS ,solved” by a greedy algorithm

=i Greedy algorithm: 3 steps

Decentralized search: 2 steps

Shorter than 6 degrees of separation!

How many steps needed to find a target? Depends on the
architecture. Average delivery time t as calculated from
greedy algorithm for pairs of nodes.



Navigation in a small world

Lattice without shortcuts: T ~ L

Jon Kleinberg's navigability problem: How do shortcuts
Influence the delivery time? |
1 shorcut of length Z is introduced with prob. P(f) ~ g-a {o]

each lattice site.

There is an optimum for alphal! m

L(d—a)/(d+1—a) O <o< d

In® L a=d

|
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|~ d<a<d+1
L a>d+1

l_“_,u%‘_ﬂa__ﬁ_../__«_,_.___.m._.....

r
|
i
1

=
=
—
v
=
)
L]
o)
T
P
3
[y 7
= %
\ J, yd
Hin
v

-
—

Only at navigability point is
greedy algorithm good!



hs from rings with first and second
S (version 2: add links between

| with p = 0.05 and different
average distance dp of diametric points.

value of N many samples are needed.
to possibly large sizes.

How does d;, depend on N?



