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Privacy-preserving data publishing:
K-Anonymity
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Data K-anonymity

What is disclosed?
the data (modified somehow)

What is hidden?
the real data
How?

by transforming the data in such a way that it is not
possible the re-identification of original database rows
under a fixed anonymity threshold (individual privacy).
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Why K-Anonymity?

Several agencies, institutions, organizations make (sensitive) data
involving people publicly available

termed microdata (vs. aggregated macrodata) used for analysis
often required and imposed by law

To protect privacy microdata are sanitized
explicit identifiers (SSN, name, phone #) are removed

Is this sufficient for preserving privacy? NO!

Susceptible to link attacks

Attribute combinations, such as gender, age and postcode, uniquely
identify some individuals




Uniqgue Combination of attributes

Hospital Patient Data
DOB Sex Zipcode Disease
4/13/86 | Female | 53715 Hepatitis
2/28/76 Male 53703 Brochitis
1/21/76 Male 53703 Broken Arm
4/13/86 | Female | 53706 Flu
2/28/76 | Female | 53706 Hang Nail




Link

ing Attack

Sweeney managed to re-identify the medical record of the governor
of Massachussetts

MA collects and publishes sanitized medical data for state employees
(microdata) left circle

voter registration list of MA (publicly available data) right circle

Name

Ethnicity

looking for governor’s record
join the tables:
— 6 people had his birth date
— 3 were men
. . . Date last
— 1in his zipcode voted
regarding the US 1990 census data oo Yotk
— 87% of the population are unique based on (zipcode, gender, dob)

Address

Visit date
Date
registered

Diagnosis

Procedure
PalT}'
affiliation

Total charge




Classification of Attributes

Key Attributes:

Name, Address, Cell Phone
which can uniquely identify an individual directly
Always removed before release

Quasi-ldentifiers:

5-digit ZIP code,Birth date, gender

A set of attributes that can be potentially linked with external
information to re-identify entities

Suppressed or generalized
Sensitive Attribute:
Medical record, wage, etc.

Always released directly. These attributes represent th
information to be protected




lassification of Attributes: Example

Key Attribute Quasi-ldentifier Sensive Attribute
Name DOB Gender Zipcode Disease
Andre 1/21/76 Male 53715 Heart Disease

Beth 4/13/86 Female 53715 Hepatitis

Carol 2/28/76 Male 53703 Brochitis
Dan 1/21/76 Male 53703 Broken Arm
Ellen 4/13/86 Female 53706 Flu
Eric 2/28/76 Female 53706 Hang Nail




K-Anonymity Protection Model

PT: Private Table

RT: Released Table

Ql: Quasi ldentifier (Ai,...,Aj)
(A1,A2,...,An): Attributes

Definition:
Let RT(A1,...,An) be a table and QI/r7 be the quasi-

identifier associated with it. RT is said to satisfy k-
anonymity iff each sequence of values in RT[QI/RrT]

appears with at least k occurrences in RT[QIRrT].




K-Anonymity

Proposed by Sweeney and Samarati

k-anonymity: intuitively, hide each individual among k-1 others

each combination of values of Qls should appear at least k times in the
released microdata

linking cannot be performed with confidence > 1/k

How to achieve this?

Generalization: publish values more general, i.e., given a domain
hierarchy, roll-up

Suppression: remove tuples, i.e., do not publish outliers. Often the
number of suppressed tuples is bounded

Privacy vs utility tradeoff
do not anonymize more than necessary
Minimize the distortion

Complexity? Optimal anonymization (minimal distorsione) is NP-
Hard!! [Meyerson and Williams PODS '04]




o

Race Rirth C-ender 7IP Prohlem
t1|Black 1065 m 0214*  [short breath
t2|Black 1965 m 0214*  |chest pain

hvpertension
hypertension
obesity

chest pain

t7|White 1964 m 0213* |chest pain

t8| White 1964 m 0213* |obesity

t0|White 1064 m 0213*  [short breath
t10{White 1967 m 0213*  |chest pain

White chest pain

Figure 2 Example of k-anonymity, where k=2 and Ql={Race. Birth, Gender, ZIP}




Release Table External Data Source

Race Birth |Gender| ZIP  |Problem

t1{Black 965 | m | 0214* [short breath _
DBlack (19 | m | 0214* |chestpain

dBhck (1965 | | 003 [wyperensin Andre | 1964 | m | 02135 | White
Wiblack 195 | f | 0203 |ypertension

SBack 1060 | £ | 01 Jobesiy Beth | 1964 | 55410 | Black
Bk (1064 | | 013 [chestpain

Wae |06 | o | 00 |chestpaim Carol || 1964\ T} 90210 ) White
18| White 1064 il 0213*  |obestty

OWne (1064 | m | 0203 |shortbresth Dan | 1967 m | 02174 | White
LU{Waite 157 il VLT |Chest patl

iWaite (1967 | m | 023 [chestpain Ellen | 1968 f 02237 | White

Suppose you have a extefhal data table.
By linking these 2 tables, you still don’t know Andre’s problem.




BOTTOM —-UP: Incognito computes a k-minimal
generalization [LeFevre SIGMOD ’05] : A-Priori like method.

Uses a bottom-up breadth-first search of the domain generalization
hierarchy

For each iteration i checks if each subset of quasi-identifiers of size i
satisfies the k-anonymity property

Removing all the generalizations that do not satisfy it

Generates all possible k-anonymization full-domain generalizations
of a given table

TOP-DOWN: k-Optimize, Bayardo and Agrawal

Assumes an ordering on QI attributes and discretizes them

Generates a tree corrsponding to the all possible generalization
hirarchy. Such alg is optima wrt a certain cost metric




A . gy g
K-anonymity Vulnerability
k-anonymity does not provide privacy if:
Sensitive values in an equivalence class lack diversity

The attacker has background knowledge
This leads to the |-Diversity model:

Lack diversity A 3-anonymous patient table
Bob Zipcode Age Disease
0]

Heart Disease

>
Zipcode | Age § 476** 2 Heart Disease
47678 27 476* 2* Heart Disease

4790 | 240 Flu
Background Knowledge 4790* 240 Heart Disease
(Carl’s brother has heart disease) 4790* >40 Cancer
Carl [ 476+ 3* Heart Disease

. 47 *%* *
Zipcode | Age <E 6 3 Cancer
476** 3* Cancer

47673 36 =




I-Diversity

Principle

Each equivalence class has at least / well-represented sensitive values

Distinct /-diversity

Each equivalence class has at least / distinct sensitive values

Probabilistic inference

Disease

(" HIV

HIV

10 records < —

pneumonia

_ bronchitis

8 records have HIV

2 records have other values




Limitations of |-Diversity

I-Diversity is insufficient to prevent attribute disclosure.

Similarity Attack A 3-diverse patient table
Bob Zipcode Age Salar Disease
Zip Age § 476** 2% 20K Gastric Ulcer
476%* 2% 30K Gastritis
47678 27 476** 2% 40K Stomach Cancer
. 4790%* =40 50K Gastritis
Conclusion 4790% >40 100K Flu
Bob’s salary is in [20k,40Kk], 4790%* >40 70K Bronchitis
which is relative low. 476%* 3% 60K Bronchitis
Bob has some stomach-related | 476** 3* 80K Pneumonia
disease. 476%* 3* 90K Stomach Cancer

I-Diversity does not consider semantic meanings of sensitive valyes
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t-Closeness: A New Privacy Measure

A completely generalized table

Adve rsarlal Age | Zipcode | .. Gender Disease
bellef @ * A * Flu

* * * Heart Disease

* * * Cancer

Belief Knowledge

BO Externa/ . P . . .
Knowledge * L * Gastritis

B Overall distribution Q of
1 sensitive values




t-Closeness: A New Privacy Measure

A released table

Adversial belief

Age Zipcode | ... Gender Disease
& < 2% 479*%* | ... Male Flu
2% 479%* | ... Male Heart Disease
. 2% 479%* | ... Male Cancer
Belief Knowledge
BO Externa/ . [ .
Knowledge >50 4766* | ... * Gastritis

sensitive values

Overall distribution Q of A

B Distribution P; of
2 sensitive values in each
equi-class




t-Clo

eness: A New Privacy Measur

Adversarial belief

&

Knowledge

B() External
Knowledge
B Overall distribution Q of
1 sensitive values
BZ

equi-class

Distribution P; of
sensitive values in each

Rationale
Q should be public information

Knowledge gain is separated:
About whole population (from B, to B,)
About individuals (from B, to B,)

We bound knowledge gain between B, and
BZ

Principle

The distance between Q and P, is bounded
by a threshold t.

/-diversity considers only P,




Utility Measures

Analysis dependent measures

Query answering accuracy: eg. How much aggregates
such as SUM or COUNT differs from the computation on
the original values

Classification accuracy: measuring the change of
entropy during classification

Distribution similarity: how much the original distribution
IS preserved

Data distortion measures

Generalization height: total number of generalization
steps

Discernability:minimizes the dimension of avarage

equivalence class: what is the effective minimal K

introduced by the transformation




Pattern-Preserving k-Anonymization
of sequences

Ruggero Pensa, Anna Monreale, Fabio Pinelli, Dino Pedreschi
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Motivations

Analysis of Sequence Database and Privacy issue
Our Framework

The problem

The Anonymization Algorithm

Experiments on mobilty data

Conclusions and Future Work
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Motivation

Availability of large amounts of sequential transaction data:

Web logs
GPS data
Clinical data

An important and vital resource for an organization if
Processed
Analyzed
Transformed into information

Many KDD (Knowledge Discovery in Databases) techniques

to extract knowledge about citizens/users’ behavior




Privacy-Preserving Data Mining
Data can contain personal sensitive information :

Need for new data mining techniques
Modifying the original data, so that

private data are protected

Analysis results are still useful

Natural trade-off between privacy quantification and data

utility I




Analysis of Sequence Database

Analysis of sequence data is a rising field in data
mining

User’'s actions stored with their timestamps

have a sequential nature

Analyzing spatio-temporal data
Allows to extract sequential behavior of users
May reveal private information about a user

Hiding personal identifiers may be insufficient

nfrequent location sequences can be Mﬂé




Mining Sequences - Example

Customer-sequence

Custld Video sequence

1(C), (H)}

1(AB), (C), (DFG)}
1(CEG)}

1(C), (DG), (H)}
1(H)}

OOk~ wdNBE-

Sequential patterns with support > 0.25

(C), (H);
{(C), (DG);




Formal Definition of a Subsequence

A sequence <a, a, ... a,> is contained in another
sequence <b, b, ... b,> (m 2 n) if there exist integers

I, <I,<...<I,suchthata,cb,,a,cb,,...,a,c b,

Data sequence Subsequence Contain?
<{2,4}{3,5,6} {8} > <{2}{3,5} > Yes
<{1,2}{3,4} > <{1}{2} > No
<{2,4}{2,4} {2,5} > <{2} {4} > Yes

The support of a subsequence w is defined as the
fraction of data sequences that contain w

A sequential pattern is a frequent subsequence (i.e., a

subsequence whose support is = minsup) I




Sequential Frequent Patterns

Dataset: D N SFP (D): S
BC support = 3 B
ABCD C
ABCD D
BCE BC
BCD BD

CD

BCD

A : occurs only 2 timesinD

C B: does not occur (order is important!)




Sequence Linking Attack

A subsequence can be
. John Smith both:

The Attacker knows:
Quasi-identifier

& 8 [%’, * Private information
| NSRS~

Commercial zone Hospital B
A

i |
o Attacker can easily
‘ guess the sequence
m of locations crossed
A —B by Smith

Infrequent
Sequence in D




Countermeasure: k-Anonymous dataset

Definition 1 (k-Harmful Sequence). Given a sequence dataset D and an
anonymity threshold k, a sequence T is k-harmtul (in D) iff 0 < suppp (1) < k.

Definition 3 (k-Anonymous Sequence Dataset). Given an anonymity
threshold k > 1 and two sequence datasets D and D', we say that D' is a k-
anonymous version of D uff each k-harmful sequence in D is not k-harmful in
D'

Dataset: D 2-Anonymous: D’
BC BC

ABCD ABCD

ABCD ABCD

BCE BC

Theorem 1. Given a k-anonymous version D’ of a sequence dataset D, we have

that, for any QI sequence T', probp:/ (1) < % »



Framework

dataset of sequences
Preserves sequential pattern mining results

Combines and
methods

Reformulates the anonymization problem as the

problem of k-harmful sequences i




Pattern-Preserving
k-anonymization Problem

Definition 4 (optimal P2kA problem). Given a sequence dataset D, and an
anonymity threshold k > 1, find a k-anonymous version D' of D such that the
collection of all k-frequent patterns in D is preserved in D', i.e., the following
two conditions hold:

S(D', k)= S8(D.k)
VI'e S(D', k) suppp (1) = suppp(T).

Our approach assures:
— D’ 18 k-anonymous
— S(D'. k) CS(D, k)
— VT e S(D'. k) suppp(T) = suppp(T)




BF-2PkA Algorithm

Based on a prefix-tree

A 3-step approach
Prefix Tree Construction
Prefix Tree Anonymization

Generation of anonymized sequences

P



Running example: k = 2

Dataset D Root Raxdt
BC
ABCD Prefix Tree .
ABCD Construction B:3 A:2 Tree Pruning @@ %@
BCE
BCD C:3 B:2 Leut &% BB
BCE:1
. BCD:1
E:1 D:1 ¢:2 E:1 B?i’l @2
Root D:2 3%
B2 A2 Dataset D’
Tree ) ’ BC
Reconstruction N . Generation of D’ ABCD
' ' ABCD
LCS: BC
1.BC ¢:2 ABCD

2.BCD D93




Experiments on Mobility Data

Dataset of GPS trajectories of cars from the European project
GeoPKDD (road network of Milan)

Each trajectory is translated into a sequence of regions of interest




Experiments: Similarity metrics

Two metrics:

SupSim: measures the similarity of patterns in terms
of support

1 Z Il]i]l{.i-:"‘lf-pppf (S)._ SuppD (3)}

SupSim = . _
! S(o) max{suppp(s), suppp(s)}

se€S(o)

S(o) = S(D',o) N S(D,o)

F-Measure: measures the similarity of patterns in
terms of number of patterns

F-Measure=2(Precision*Recall)/(Precision +R;all§



Experiments: Sparse Data

The anonymization tends to prune more sequences
Some frequent sequential patterns in D are missing in D’

F-Measure Milan 0.010

T T
minsup=500 —+

L minsup=1500
oy minsup=3000 - *
' SupSim Milan 0.010
0.8 1 : ;
minsup=500 —+
minsup=1500
minsup=3000 -
L ] .
0.6 0.8 F '\
0.4 T 06 k-
B2 I Joat
D 1 1 ] L 1 1 1 ]
0 50 100 150 200 250 300 350 400 450 500 02T
K values
0 L L 1 1 ] 1
0 50 100 150 200 250 300 as0 400 450 500

K values



Experiments: higher density threshold

The collections of patterns before and after the
anonymization are similar

F-Measure Milan 0.028

T T
minsup=500 —+

minsup=750
minsup=1000 - =
SupSim Milan 0.028
1 T T
minsup=500 ——+
L x minsup=750
\ Foypm e . = S minsup=1000
4 0.9
Jost
1 0.7 |
1 1 L L L ] ] L
50 100 150 200 250 200 350 400 450 5010.6
K values
0‘5 L L ] 1 1 L L ]
0 50 100 150 200 280 300 350 400 450 500
K values



Privacy-preserving data publishing:
Data Randomization, Perturbation
and Obfuscation

P



Warner, S.,

Randomized response: a survey
technique for eliminating evasive
answer bias.

JASA, March 1965, 63-69.
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RANDOMIZED RESPONSE: A SURVEY TECHNIQUE
FOR ELIMINATING EVASIVE ANSWER BIAS

STANLEY L. WARNER
Claremont Graduate School

For various reasons individuals in a sample survey may prefer not
to confide to the interviewer the correct answers to certain questions.
In such cases the individuals may elect not to reply at all or to reply
with incorrect answers. The resulting evasive answer bias is ordinarily
difficult to assess. In this paper it is argued that such bias is potentially
removable through allowing the interviewee to maintain privacy
through the device of randomizing his response. A randomized response
method for estimating a population proportion is presented as an ex-
ample. Unbiased maximum likelihood estimates are obtained and their
mean square errors are compared with the mean square errors of con-
ventional estimates under various assumptions about the underlying
population.




2. A RANDOM RESPONSE MODEL FOR PROPORTIONS

Suppose that every person in a population belongs to either Group A or
Group B and it is required to estimate by survey the proportion belonging to
Group A. A simple random sample of n people is drawn with replacement from
the population and provisions made for each person to be interviewed. Before
the interviews, each interviewer is furnished with an identical spinner with a
face marked so that the spinner points to the letter A with probability p and
to the letter B with probability (1 —p). Then, in each interview, the interviewee
is asked to spin the spinner unobserved by the interviewer and report only
whether or not the spinner points to the letter representing the group to which
the interviewee belongs. That is, the interviewee is required only to say yes or
no according to whether or not the spinner points to the correct group; he does
not report the group to which the spinner points. Under the assumption that
these yes and no reports are made truthfully, maximum likelihood estimates of

the true population proportion are straightforward.




Let

w=the true probability of A in the population,

p=the probability that the spinner points to 4, and
¥ — 1 if the +th sample element says yes

* 10 if the 7th sample element says no.

Then

PX;=1)=ap+ (1 —m)(1 — p),
PX;=0)=0-mp+ =1 — p),

| <2




Estimating 7T
P(X=1)=np+(1-n)(1-p)

Solving for
n=[PX=1)-(1-p)] / 2p-1)
P(X=1) estimated by n1/n

@
v

I(in1 /I nY—_(1 _n\X1 / (9D
ACEELEERRY) \ ! M/l I\~

Nn— 1)\
o 1)

What happens with p=1 ?
What happens with p=1/2 ?
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and arranging the indexing of the sample so that the first n; report “yes”

while the second (n—n,) report “no,” the likelihood of the sample is
L=[mp+0-m1-p]"[Q-mp+1—p]—™ (1)

The log of the likelihood is
log L = nilog [xp + (1 — ) (1 — p)]

2
+ (= ) log [(1 — W) + =1 — p)], 2

and necessary conditions on 7 for a maximum are

(n —n)@2p — 1) _ ni(2p — 1)
l-mp+a1l—p) =+ A—-m)(1—Dp)
or
ni

wp+(1—1r)(1—*p)=;-- (3)

| <2




Then, supposing ps£1/2, the maximum likelihood estimate of = is
p—1 ni

£ = :
+ (2p — n

h2p~—~1

P



TABLE 1. COMPARISON OF RANDOMIZED AND REGULAR ESTIMATES
FOR TRUE PROBABILITY OF A=.6 AND n=1000

Mean Square Error Randomized
Regular Estimates
Mean Square Error Regular
Probability of Truth i
T, T Bias p=.0 p=.7 p=_8 »=.,9
.95 1.00 — .03 5.45 1.36 .60 .33
.90 1.00 —.06 1.62 .40 18 .10
.70 1.00 —.18 .19 .05 .02 .01
.50 1.00 —.30 .07 .02 .01 .00
1.00 .95 .02 9.82 2.44 1.08 .60
1.00 .90 .04 3.41 .85 .37 .21
1.00 .70 .12 .43 .11 .05 .03
1.00 .50 .20 .16 .04 .02 .01
.95 .95 —.01 18.25 4.54 2.00 1.11
.90 .90 — .02 9.70 2.41 1.06 .89
.70 .70 — .06 1.62 .40 .18 .10
.50 .50 —-.10 .61 .15 .07 .04




Data Perturbation and Obfuscation

What is disclosed?
the data (modified somehow)

What is hidden?

the real data

How?

by perturbating the data in such a way that it is not
possible the identification of original database rows
(individual privacy), but it is still possible to extract valid

knowledge (models and patterns).

A.K.A. “distribution reconstruction’”




Data Perturbation and Obfuscation

R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proceedings of
SIGMOD 2000.

D. Agrawal and C. C. Aggarwal. On the design and quantification of privacy
preserving data mining algorithms. In Proceedings of PODS, 2001.

W. Du and Z. Zhan. Using randomized response techniques for privacy-
preserving data mining. In Proceedings of SIGKDD 2003.

A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in privacy
preserving data mining. In Proceedings of PODS 2003.

A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke. Privacy preserving mining of
association rules. In Proceedings of SIGKDD 2002.

K. Liu, H. Kargupta, and J. Ryan. Random Projection-based Multiplicative
Perturbation for Privacy Preserving Distributed Data Mining. IEEE Transactions on
Knowledge and Data Engineering (TKDE), VOL. 18, NO. 1.

K. Liu, C. Giannella and H. Kargupta. An Attacker's View of Distance Pre
Maps for Privacy Preserving Data Mining. In Proceedings of PKDD’06

rving




Data Perturbation and Obfuscation

This approach can be instantiated to
association rules as follows:

D source database;
R a set of association rules that can be mined from D;

Problem: define two algorithms P and M, such that

P(D) = D’ where D’ is a database that do not
disclose any information on singular rows of D;

Mp(D) =R




Agrawal and Srikant ‘00

Assume users are willing to
Give true values of certain fields
Give modified values of certain fields
Practicality
17% refuse to provide data at all
96% are willing, as long as privacy is maintained
27% are willing, with mild concern about privacy
Perturb Data with Value Distortion
User provides x;+r instead of x;

ris a random value
Uniform, uniform distribution between [-a, a]
Gaussian, normal distribution with n =0, &




Rand

omization Approa

Alice’s
age

- 30| 70K ...

50 | 40K | ...

Y Y

\ 4 \ 4
Add random Randomizer
number to J
Age \ 4 \ 4

Randomizer

65| 20K | ...

Y Y

30
becomes
65
(30+35)

25| 60K | ...

ch Overview




Pre

serving Data Privacy (1)

Value-Class Membership

Discretization: values for an attribute are
discretized into intervals
Intervals need not be of equal width.
Use the interval covering the data in computation, rather
than the data itself.
Example:

Perhaps Adam doesn’t want people to know he makes
$4000/year.

Maybe he’s more comfortable saying he makes between
$0 - $20,000 per year.

The most often used method for hiding individual

values. ‘ g




Preserving Data Privacy (2)

Value Distortion
Instead of using the actual data x;

Use x; + r, where ris a random value from a
distribution.

Uniform Distribution
r is uniformly distributed between [-a, +d]
Average ris 0.
Gaussian Distribution
r has a normal distribution
Mean u(r) is O.
Standard _deviation(r) is o




'hat do we mean by “private?”

W = width of intervals in discretization

Confidence
50% 95% 99.9%
Discretization | 0.5 x W | 095 x W | 0.999 x W
Uniform 0.5x 2 | 0.95 X 2¢ | 0.999 X 2cx
(Gaussian 1.3 x0oc | 3.92%x o 6.8x

Table 1: Privacy Metrics

If we can estimate with ¢% confidence
The value x lies within the interval [x,, x,]
Privacy = (x,- X,), the size of the range.
If we want very high privacy
2a> W

Value distortion methods (Uniform, Gaussian) provide more
privacy than discretization at higher confidence levels.
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Reconstruct

1 AW\ I AW/ L O

Dlstorted Values (1

U
3_

C

v

Original data values: x., x,, ..., X,

Random variable distortion: y,, y,, ..., ¥,
Distorted samples: x,+y,, X,%y,, ..., X%V,

F. : The Cumulative Distribution Function (CDF)

n'F randnm rhei'nrhnn \lgnghlne \/
J1I TCUITIIVUUILLTL UTOLWVU LTIV vAILIANvi ]I

F,.: The CDF of original data values x;
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Reconstruction Algorithm (1)

(1) % := Uniform distribution
(2) j:= 0 // Iteration number
repeat

Gy . 1§ fy(wi—a) f% (a)
(3‘) fX ((1.) — 21:1 fj‘; Fr(wi—2) fi,(z)dz
4 J=7+1

until (stopping criterion met)

How it works (incremental refinement of Fy) :

1. The f(x, 0) initialized to uniform distribution
2. For =0 until stopping, do

3. Find f(x, j+1) as a function of f(x, j) and F,
4

When loop stops, f(x) estimates F,




Reconstruction Algorithm (2)

(1)
(2)

(3)
(4)

E( = Uniform distribution

7 := 0 // Iteration number
repeat

J+1(,) — 1§ fy(wi—a) £ (a)
fx )= iz 7 Fr(wi—z) £ (2)dz
Ji=3+1

until (stopping criterion met)

E= ]

Stopping Criterion

Compare successive estimates f(x, j).

Stop when difference between successive estimates very
small.




Mumber of Becords

Distribution Reconstruction Results

(1)

Gaussian
(a) Plateau
1000 . . .
Cinginal ——
Randomized ——
wuo . Reconstructed -=—
600
400
200
-1 0.5 0 1 1.5 2

0.5
Attribute Yalue

Original = original distribution

Mumber of Records

1200

1000

8200

&00

400

200

]

(b) Triangles

0.5

Randomized = effect of randomization on original dist.

Reconstructed = reconstructed distribution

Cinginal ——

Randomized —
Reconstructed —=— 1

] 0.5
Attributa YWalus




Mumber of Eecords

Distribution Reconstruction Results

(2)

(d) Triangles

iinginal —e—

Randomized —
Racanstructad -=— 1

Tniform
(<) Plateau
1000 . . . . . 1200
cnginal ——
Randomized —+—
200 Reconsiructed -e— 1000 |
=
= 800 |
GO0 o
(il
5 600
400 T
E 400 |
=
200 F -
|:| 1 ':I ;
5 05 1 1.5 2 -1 05

05
Attributa Walue

Original = original distribution
Randomized = effect of randomization on original dist.

Reconstructed = reconstructed distribution

] 0.5
Adtribute Value

1

1.5
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Authors are able to reconstruct
Original shape of data
Almost same aggregate distribution

This can be done even when randomized data
distribution looks nothing like the original.
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Decision-Tree Classifiers w/ Perturbed
Data

When/how to recover original distributions in

' 2
CREDIT RISK order to build tree:

 Global - for each attribute, reconstruct
Age < 25 original distribution before building tree

« ByClass — for each attribute, split the

/ \ S training data into classes, and reconstruct
alary < 50k S
O O distributions separately for each class; then

o / \ build tree

O O * Local — like ByCiass, reconstruct

High Low distribution separately for each class, but do
this reconstruction while building decision
tree




Experimental Results — Classification
w/ Perturbed Data

Compare Global, ByClass, Local algorithms against
control series:
Original — result of classification of unperturbed training data

Randomized — result of classification on perturbed data with no
correction

Run on five classification functions Fn1 through Fn5.
(classify data into groups based on attributes)

P
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Experimental Results — Varying
Privacy

Using ByClass algorithm on each classification
function (except Fn4)

Vary privacy level from 10% - 200%
Show

Original — unperturbed data

ByClass(G) — ByClass with Gaussian perturbation
ByClass(U) — ByClass with Uniform perturbation
Random(G) — uncorrected data with Gaussian perturbation
Random(U) — uncorrected data with Uniform perturbation

P




Accuracy (9]

Results — Accuracy vs. Privacy (1)

Tunction 2
100 1000 T T T
m,
a0 an %
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Results — Accuracy vs. Privacy (2)
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Vulnerabllity

In many cases, the original data can be accurately
estimated from the perturbed data using spectral filter
designed based on random matrix

Main ldea: Use eigen-values properties of noise to filter

P




Spectral Filtering

U+V data

Receive Data

Decomposition of eigen-

. N I
values of noise and _l\ ~
Or|g|na| data / | Covariance l | N

Matrix b Centering Data

| Calculation |

Recovered data

[Eigen Analysis nl‘ '
\ I Covariance

Matrix
N\

\- |7K.Nand}._

¥ __.

| Caleulation of

Elgenvectors ol
actual data

Y

Actual data
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Decomposing eigen-values:
separating data from noise (1)

Let U and V be the m x n data and noise matrices
P the perturbed matrix Up= U+V

Covariance matrix of
Up=UpTUp=(U+V) T(U+V)=UTU + VTU + U™V + UTU

Since signal and noise are uncorrelated in random perturbation,
for large no. of observations: VTU ~ 0 and U™V ~ 0, therefore

UpTUp= U™U + VTV
Since the above 3 matrices are correlation matrices, they are

symmetric and positive semi-definite, therefore, we can

perform eigen decomposition:
U'U = QuAqua
U, Up = QpApQ), and
VTV — Q'UA'vauTa
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Decomposing eigen-values:
separating data from noise (2)

A, & Ay + Ay

Wigner’s law: Describes distribution of eigen values for normal
random matrices:

* eigen values for noise component V stick in a thin range given by
Ain and A.... (show example next page) with high probability.

* Allows us to compute A,,;, and A,,.,.

Solution!

Giving us the following algorithm:

1.
2.

Find a large no. of eigen values of the perturbed data P,

Separate all eigen values inside A,,,;,, and A,., and save row
indices |,

Take the remaining eigen indices to get the “peturbed” but not
noise eigens coming from true data U: save théir row indices I,

Break perturbed eigenvector matrix Qpinto/A,= Qp(ly), Ay = Qp
().

Estimate true data as projection\; U £ UpAuAZ_




Related Work: Statistical Databases
Data Perturbation:

replace the original database by a sample from the same
distribution (e.g. [LST83][LCL85][Rei84])

sample the result of a query (e.g. [Den80])
swap values between records (e.g. [Den82])
add noise to the query result (e.g. [Bec80])
add noise to the values (e.g. [TYW84][War65])

Synthetic Techniques:
Full Synthetic: generate a dataset that is completely new

Partially synthetic: produce a dataset, where the original data and
synthetic data are mixed.

Synthetic and Original data have the same analitical properties

P




Privacy-aware Knowledge
Publishing

P



The Purpose

We want to publish data mining results

We DON’T want to release information

related to few people, that can help to trace
single individuals

We don't want to specify any other
information

P



Privacy-aware Knowledge Sharing

What is disclosed?
the intentional knowledge (i.e. rules/patterns/models)

What is hidden?

the data source

The central question:
“do the data mining results themselves violate privacy?”

Focus on individual privacy: the individuals whose
data are stored in the source database being mined.

P




Privacy-aware Knowledge Sharing

M. Kantarcioglu, J. Jin, and C. Clifton. When do data mining results violate
privacy? In Proceedings of the tenth ACM SIGKDD, 2004.

S. R. M. Oliveira, O. R. Zaiane, and Y. Saygin. Secure association rule
sharing. In Proc.of the 8th PAKDD, 2004.

P. Fule and J. F. Roddick. Detecting privacy and ethical sensitivity in data
mining results. In Proc. of the 27° conference on Australasian computer
science, 2004.

Atzori, Bonchi, Giannotti, Pedreschi. K-anonymous patterns. In PKDD and
ICDM 2005, The VLDB Journal (accepted for publication).

A. Friedman, A. Schuster and R. Wolff. k-Anonymous Decision Tree
Induction. In Proc. of PKDD 2006.




An Example in Medical Domain

Example

@ Suppose Dr. Gregory House conduces both usual hospital
activities and research

@ He has a big database with all sensitive information about
his patients

@ Playing with Data Mining, he discovered interesting trends
about patologies in his patient data

Can Dr. House publish his discoveries to third persons without

offending the privacy of his patients?

| <2



An Example in Medical Domain

- —

s ~

\
. /
Apriori (o) Frequent | \
\ | Itemsets | /
/

N
H f

Does this set of itemsets violate the
anonymity of individuals in DB?

P



Privacy-aware Knowledge Sharing

Association Rules can be dangerous...

Example

aiNap,/Nasz=as [sup=280, conf=98.7%]

sup({ai.az.az.as}) 80
~—— =81.05
conf 0.987

In other words, we know that there is just one individual for
which the pattern a; » a> » as / —a, holds.

How to solve this kind of problems? ‘ g

sup({ai,az,as}) =




Now we know that ....

Fact

@ Even if we mine with a high support value, we can infer
patterns holding in the original database which are not
intentionally released

@ They can regards very few Individuals

@ The support value of such patterns can be inferred without
accessing the database

| <2



Definition (Anonymous Pattern)

Given a database D and an anonymity threshold k, a pattern p
Is said to be k-anonymous if supp(p) > k or supp(p) = 0.

Definition (Inference Channel)

An Inference Channel is any set of itemsets from which it is
possible to infer that a pattern p is not k-anonymous.

We are interested in inference channels that are made of
frequent itemsets.

| <2
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O

enario

Pattern sanitization

Detect Inference Channels (given k)




vp € Pat(Z) : 0 < supp(p) < k.3l CJec2f:¢f

@ Translation: we can prune the search space by looking for
Inference Channels regarding only conjunctive patterns.

@ This property makes possible to have
a (Naive) Inference Channel Detector Algorithm




Distributed Privacy Preserving
Data Mining

P
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Objective?

computing a valid mining model from several
distributed datasets, where each party owing a
dataset does not communicate its data to the other
parties involved in the computation.

How?
cryptographic techniques

A.K.A. “Secure Multiparty Computation”

P
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C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Y.Zhu.
Tools for privacy preserving distributed data mining. SIGKDD
Explor. Newsl., 4(2), 2002.

M. Kantarcioglu and C. Clifton. Privacy-preserving distributed
mining of association rules on horizontally partitioned data. In
SIGMOD Workshop on Research Issues on Data Mining and
Knowledge Discovery (DMKD’02), 2002.

B. Pinkas. Cryptographic techniques for privacy-preserving
data mining. SIGKDD Explor. Newsl., 4(2), 2002.

J. Vaidya and C. Clifton. Privacy preserving association rule

mining in vertically partitioned data. In Proceedings of ACM
SIGKDD 2002.



Distributed Data Mining:
The “Standard” Method

Warehouse Mining - vd 'It
Approach resufts

Warehouse




Private Distributed Mining:

What is it?
What Sata | Comb_ined
Won’t Mining - valid
Work results
Local | Local @ﬂé
Date Date - =




Private Distributed Mining:
What is it?

What Will
Work
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This approach can be instantiated to association rules in two
different ways corresponding to two different data partitions:
vertically and horizontally partitioned data.

Each site s holds a portion /s of the whole vocabulary of items /, and
thus each itemset is split between different sites. In such situation, the
key element for computing the support of an itemset is the“secure”
scalar product of vectors representing the subitemsets in the parties.

The transactions of D are partitioned in n databases D1, . .. ,Dn, each
one owned by a different site involved in the computation. In such
situation, the key elements for computing the support of itemsets are the
“secure”’union and “secure” sum operations.




Association Rule Mining:
Horizontal Partitioning

Distributed Association Rule Mining: Easy
without sharing the individual data [Cheung+'96]
(Exchanging support counts is enough)

What if we do not want to reveal which rule is
supported at which site, the support count of
each rule, or database sizes?

Hospitals want to participate in a medical study

But rules only occurring at one hospital may be a

result of bad practices
Is the potential public relations / liability cost worth it?




Overview of the Method
(Kantarcioglu and Clifton '02)

Find the union of the locally large
candidate itemsets securely

After the local pruning, compute the
globally supported large itemsets securely

At the end check the confidence of the

potential rules securely




Securely Computing Candidates

Key: Commutative Encryption (E,(E,(x)) = E,(E.(X)))
Compute local candidate set
Encrypt and send to next site
Continue until all sites have encrypted all rules
Eliminate duplicates

Commutative encryption ensures if rules the same, encrypted rules
the same, regardless of order

Each site decrypts
After all sites have decrypted, rules left

Care needed to avoid giving away information through
ordering/etc.

Redundancy maybe added in order to increase the
security.

Not fully secure according to definitions of secure
multi-party




Computing Candidate Sets

E,(E,(E;(ABC))) 1
E,(E,(E;(ABD))) ABC

E.(ABC)
E.(ABD)

\_// \_//
Ez( Ez(EJM)) 2 ) > 3
ABD ABC
\_// \_//

E/(E,(E;(ABD)))

E;(E4(E5(ABD)))

P




Computing Candidate Sets

Ez( E3(ABC)) 1
Ez( E3(ABD)) ABC

E.(ABC)
E.(ABD)

E.(ABC)

~ @ @@ ~ @ @@
E,(E5(E4(ABC))) 2 ) g 3
ABD ABC
-~ @ @

E,(E«(ABC))

P




Compute Which Candidates Are
Globally Supported?

Goal: To Chgck whether
X.sup> s* " DB || (1)
=1

Note that checking inequality (1) is equivalent to

checking inequality (3)




Which Candidates Are Globally
Supported? (Continued)

Now securely compute Sum = 0O:

Site, generates random R
Sends R+count, — frequency~dbsize, to site

Site, adds count, — frequency*dbsize,, sends to
site,, ,

Final result: Is sum at site,,- R =07
Use Secure Two-Party Computation

This protocol is secure in the semi-honest

model




Computing Frequent:
s ABC 2 5%"7

—
—

1
ABC: 16+18-.05*300 ABC=18 ABC: 19 2 R?

DBSize=300

ABC: YES!
~ A ~ A

2 A ‘ 3 R=17
ABC=9 [ | ABC=5

DBSize=200 DBSize=100

~ @ @@ ~ @ @
ABC: 18+9-.05*200 ABC: RAcHL08:10a). @’é |




Computing Frequent:
s ABC = 5%7?

1
ABC: 16+18-.05*300 ABC=18

DBSize=300

ABC: 19 2 R?

N~ @ @ M~ @ @
2 3
ABC=9 ABC=5
DBSize=200 DBSize=100
~ @ @@ ~ @ @

ABC: 17+9-.05*200

ABC: YES!

R=17

ABC: R+count—freq.@ﬂé



Computing Confidence

Checking confidence can be done by the
previous protocol. Note that checking
confidence for X = Y

ZXY.sup,
{XuY}sup>C:> = -
X.sup Zx.sup,

=1

DZ(XY-Sup,—C*X.sup,)zO

P




Association Rules In
Vertically Partitioned Data

Two parties — Alice (A) and Bob (B)

Same set of entities (data cleansing, join
assumed done)

A has p attributes, A, ... A

B has q attributes, B, ...

Total number of transactions, n
Support Threshold, k

p
B,
q

JSV

Brain Tumor

Diabetic

JSV

5210

Li/lon iiezo ‘




Vertically Partitioned Data
(Vaidya and Clifton '02)

Learn globally valid association rules
Prevent disclosure of individual
relationships

Join key revealed

Universe of attribute values revealed
Many real-world examples

Ford / Firestone
FBI/IRS
Medical records




Basic idea

Find out if itemset {A,, B,} is frequent (i.e., If support of
{A1, B4} 2 k)

Key | A, Key | B;
K, 1 K, 0
K, 0 K, 1
Ks 0 Ks 0
K, 1 K, 1
Ks 1 K 1

Support of itemset is defined as number of transactions
in which all attributes of the itemset are present

For binary data, support =|A, A\ Bj|
Boolean AND can be replaced by normal (arithmetic)

multiplication. i




This is the scalar (dot) product of two vectors

To find out if an arbitrary (shared) itemset is
frequent, create a vector on each side consisting
of the component multiplication of all attribute
vectors on that side (contained in the itemset)

E.g.,tofind outif {A,, A;, A5 B,, Bs}is frequent

A forms the vector X =[] A, A; A;

B forms the vector Y =[] B, B,
Securely compute the dot product of X and Y




The algorithm

1. Ly = {large l-1temsets )

2, for (k=2; Ly_1 # o; k++) do begin

3. (= aprnion-gen{L;_1);

4. for all candidates ¢ £ 'y do begin

3. if all the attributes in ¢ are entirely at A or B

i} that party independently calculates c.count

7. alge

M. let A have [ of the attnbutes and B have the remaiming m attributes
i, construct X on A's side and ¥ on B's side where X = [['_, 4; and ¥ = [, B,
10. compute c.oount = XY =T 1, +

11, endii

12, Ly = Ly U cle.count > minsup

13, end

14, end

15, Answer = Ui lg

P



Protocol

A generates n/2 randoms, R, ... R
A sends the following n values to B

<X1 Ao Rt @uax Ro o+ 8 R%>
(+ R @R e Ry

<Xn + an,1* Rl + an,z* Rz Tt an,%* R%>
The (n?%/2) a;; values are known to both A and B

P




Protocol (cont.)

B multiplies each value he gets with the corresponding y
value he has and adds all of them up to get a sum S,

which he sends to A.
S —

_ y1*{X1 + (a.l,l* Rl T * Rz o a.l,%* R%)}
* yz *{Xz + (az,l* Rl + az,z* Rz o agl%* R%)}

T yn 7k‘{xn + (an,l* R1+ an,z* Rz Tt an,%* R%)}_

Gréup the x;*y, terms, and expand the equations




Protocol (cont)

+( d..* 0 i alz*yl* GrOUping
| e components
i (\az,l* PALC S A vertically
and
i . factoring out
T (\an,l* yn (dadu an,2* yn ng

I



Protocol (complete)
S —
in*yi

+Relayrary +rary)
+R,* o y1+ a yﬁ'”+ a yn

4 R%* \alinz* )/1 + a.z,ﬂz* y9+...+ an,ﬂz* yn/

* A already knows R,...R,_,
* Now, if B sends these n/2 values to A,

» A can remove the baggage and get the scalar produc‘@



Security Analysis

A sends to B

n values (which are linear equations in 3n/2
unknowns — the n x-values and n/2 R-values)

The final result (which reveals another linear equation
in the n/2 R-values) (Note — this can be avoided by
allowing A to only report if scalar product exceeds
threshold)

B sends to A

The sum, S (which is one linear equation in the n y-
values)

n/2 values (which are linear equations in n unknowns

— the n y-values) I




Security Analysis

Security based on the premise of revealing
less equations than the number of
unknowns — possible solutions infinite!

Security of both is symmetrical

Just from the protocol, nothing can be
found out

Everything is revealed only when about

half the values are revealed




Knowledge Hiding

P



Privacy issue and knowledge
discovery

Security and privacy threats from data mining and similar
applications

Possible solutions to prevent data mining of significant
knowledge:

Releasing only subsets of the source database
Augmenting the database
Disclosing an aggregated but not individual value

P



Knowledge Hiding

What is disclosed?
the data (modified somehow)

What is hidden?

some “sensitive” knowledge (i.e. secret rules/patterns)

How?

usually by means of data sanitization

the data which we are going to disclose is modified in
such a way that the sensitive knowledge can non longer

be inferred,

while the original database is modified as less as
possible.




Knowledge Hiding: Association Rules

This approach can be instantiated to
association rules as follows:

D source database;
R a set of association rules that can be mined from D;
R, a subset of R which must be hidden.

Problem: how to transform D into D’ (the database we are
going to disclose) in such a way that R/ R, can be mined

from D"




Knowledge Hiding

E. Dasseni, V. S. Verykios, A. K. EImagarmid, and E.
Bertino. Hiding association rules by using confidence
and support. In Proceedings of the 4th International
Workshop on Information Hiding, 2001.

Y. Saygin, V. S. Verykios, and C. Clifton. Using
unknowns to prevent discovery of association rules.
SIGMOD Rec., 30(4), 2001.

S. R. M. Oliveira and O. R. Zaiane. Protecting sensitive
knowledge by data sanitization. In Third IEEE
International Conference on Data Mining (ICDM’03),

2003.

O. Abul, M. Atzori, F. Bonchi, F. Giannotti: Hiding
Sequences. |ICDE Workshops 2007




Hiding association rules by using
confidence and support

E. Dasseni, V. S. Verykios,
A. K. Elmagarmid, and E. Bertino

| @2
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Rule Discoverv

e 1 v J

SSOociation Ru
Let/={i,i,...,i }beasetof literals, called items.
A set of 1tems X < 7 1s called an 1itemset.

Let D be a set of transactions, where each
transaction 7' 1s an itemset such that 7' < /.

A transaction 7 contains an itemset X, 1t X < T

P




Association Rule Discovery
An association rule is an implication of the form:

X=YwhereXc/l Yc/ and X[)Y=0.

xXUY XUY|
,andsupport=
X N

confidence=

P
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TID

ltems

T1

ABCD

T2

ABC

T3

ACD

-

Frequent
ltemsets

Support

AB

AC

AD

BC

CD

ABC

ACD
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Optimal Sanitization is NP-hard

Let D be the source database. Let R be a set of
“significant” association rules that are mined from D.
Let r be a “sensitive” rule in R. Transform D into D’
so that all rules in R can still be mined from D’ but r

Optimal sanitization is NP-Hard

Reduction from the NP-Hard problem of Hitting Set

P




Hiding Methods

Reduce the support of frequent itemsets
containing sensitive rules

Cyclic Method

Greedy Method

|solated items and safe transactions

Reduce the confidence or support of rules

P




Hiding Assomatlon Rules by using
fd NnAd Siinnn '|'

Oa AN
won nce and ouUpPpUIL

Assumptions

hide a rule by decreasing either its confidence or its
support

decrease either the support or the confidence one
unit at a time (we modify the value of one transaction
at a time)

hide one rule at a time

consider only set of disjoint rules: rules supported by
large itemsets that do not have any common item

I




Hiding a rule X->Y by using
Confidence and Support

Conf(X-=2Y) = Supp(XY) / Supp(X)

Strategies:

Decreasing confidence of rule
Increasing the support of X in transactions not supporting Y

Decreasing the support of Y in transactions supporting both X
and Y

Decreasing support of rule
Decreasing the support of the corresponding large itemset (XY)

P




Strategies: basic idea

Transactions viewed as lists
One element for each item in DB

TID |ltems ™ A | B | C
T1 ABC 1 1 1 1
2 |A 12 1 0 0

Decreasing support of S = turning to 0 one item
In one transaction supporting S

Increasing support of S = turning to 1 one item
In one transaction partially supporting S




TID |lItems
T1 ABC
T2 ABC
T3 A C
T4 A

15 B

MIN_SUPP = 1/5=20%
MIN_CONF = 80%

AR

Conf

AB->C

100%

BC—2>A

100%

<5




Example:hiding AB-=>C
by increasing support of AB

Turn to 1 the item B in transaction T4

TID |ltems
T1 ABC

TID |Items — ABC

T1 ABC T3 AC

12 ABC T4 AB

T3 A C 5 g

T4 A

T5 B AR Conf
AB—=>C 66%
BC—=>A 100%




Example: hiding AB>C
by decreasing support of C

Turn to 0 the item C in transaction T1

TID |Iltems
T1 ABC
T2 ABC
T3 A C
T4 A

T5 B

-

TID |ltems

T1 AB

12 ABC

13 A C

T4 A

15 B

AR Conf

AB->C

50%

BC—-2>A

100%




Hiding Sequences

O. Abul, M. Atzori, F. Bonchi, F. Giannotti

ISTI-CNR - Pisa, Italy




Knowledge Hiding: Sequential Patterns

Definitions

Let S be a simple sequences defined over an
alphabet 2, i.e. S 2", and D be a database of
simple sequences.

Se 2*is a subsequence of Te 2% denoted SE T,
iff S can be obtained by deleting some elements
(not necessarily contiguous) from T

Support of sequence of S on D is defined as

§ This is not a restriction but preferred for the sake of simplicity. Later it will be generalize
element of S is a subset of >. - -




The Sequence Hiding Problem

Problem 1 (The Sequence Hiding Problem)

Let S, = {Sy,...,S,} with S; € ¥*, Vi € {1,...,n},
be the set of sensitive sequences that must be hid-
den fromD. Giwven a disclosure threshold ), the Sequence
Hiding Problem requires to transform D win a data-
base D" such that:

1 . .\Y/LSHI-‘E: - 5}1_.. SU*E}DI (LSHIE.) g L* ;

2. ) sexn\s, |5upp(S) — supp (S)| is minimized.




[\ P Ry -y

IvialC lllllg set

T

Matching set allows to identify all instances
of sensitive patterns in a sequence

Definition 1 (Matching Set) Given two sequences
S e Sy andT € D, we define the matching set of S in
T, denoted ML, as the set of all sets with size |S| of in-
dices for which S T T'. For instance, let S = (a,b,c)
and T = (a,a,b,c,c,b,a,e), in this case we got
UL = {(1,3,4),(1,3,5).(2,3,4).(2,3.5)}. Moreover,
given a sequence 1l € D we define J-"Vlgh = Uq s, ML,

P
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Sanitization operator Marking replaces certain
positions with a special symbol A%

Problem 2 (Sequence Sanitization) Given: A se-
quence 1" and a set of patterns Sy, to be hidden. Objec-
tive: Find a set of position indices of 1 such that, re-
placéwg the symbols in the positions with A results in

Sg _w

Theorem 1 Optimal Sequence Sanitization Problem is
NP-Hard.
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A 2-stage greedy algorithm
First stage: Select a subset of D for sanitization
Second stage: For each sequence chosen to be

sanitized (the output from the first stage), select
marking positions

The heuristic

Recalling the objective is introducing minimum
number of As,

For the first stage: Sort the sequences in ascending order
of matching set size, and select top |D|-  for sanitization

For the second stage: Choose the marking position that is

involved in most matches I




A Sanitization Algorithm

lllustrating the heuristic

Example 1 Consider again the case S = {a,b,c) and
T = {la,a,be.ebae). In this situation marking the
symbol e (T[8]) does not affect the matching set while
marking the symbolb in T [3] position will cause ML = 0.
Note that the latter marking removes all the matehing
which iz equivalent of hiding all sensitive pattern in-
stances and thus provdes sanifization. Also note that
markingT [1] reduces the number of matches without pro-
widing sanitization, while marking T[1] and T'[2] together
provides sanitization.
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Two datasets:

SYNTHETIC: 300 discretized trajectories of
synthetic car movements generated in our lab.

|2|=100 (a grid of 10x10), and average sequence
length=20.1 (after repetitions removed)

TRUCKS: 273 discretized trajectories of real truck
movement data [Frentzos et al. 2005]

|2|=100 (a grid of 10x10), and average sequence

length=6.8 (after repetitions removed)




EXx

Xperimental Evaluation

4 algorithms are experimented to get informed
about the contribution of global (at the first
stage) and local (at the second stage)
heuristics over random selections:

HH: The proposed heuristics at both level

HR: The heuristic in second stage while random

subset selection in the first stage

RH, RR: defined accordingly




Utility Measures
Three different distortion measures, M1, M2 and M3

o M1 (Data distortion): total number of marking
symbols in T,

o M2 (Frequent Pattern Distortion):
F(D.0)| — |F(D.0)
F(D, o)

o M3 (Frequent Pattern Support Distortion):

1 Z supp(S) — supp:(5)
(Do) supp ()

ScF (D )
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Experimental Evaluation

Results (effect of heuristics, TRUCKS)
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The heuristics causes relatively smaller distortions at all thresholds
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Results (effect of heuristics, SYNTHETIC)
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Privacy Preserving Outsourcing
of Data Mining

P



Secure Outsourcing of Data Mining

Organizations could do not posses
iIn-house expertise for doing data mining
computing infrastructure adequate

Solution: Outsourcing of data mining to a service provider
specific human resources
technological resources

The server has access to data of the owner

Data owner has the property of both
Data can contain personal information about individuals
Knowledge extracted from data can provide competitive

advantages l :




The Problem
PROBLEM: Given a plain database D, construct an encrypted database
D* such that:
all encrypted transactions in D* and items contained in it are secure
given any mining query the server can compute the encrypted result
encrypted mining and analysis results are secure

the owner can decrypt the results and so, reconstruct the exact
result

the space and time incurred by the owner in the process has to be
minimum




Framework Architectur

4 N | W11 \J

Client/Owner
- - ™)
FrL _ Noise n | Server
transaction ‘ —
source | :
Original A
TDBD Compact
Synopsis

- Encrypted TDB
MiL’ning Query X

Query Results

P



Secure Outsourcing of Data Mining

W. K. Wong, D. W. Cheung, E. Hung, B. Kao, N. Mamoulis.

Security in Outsourcing of Association Rule Mining. VLDB
2007.

L. Qiu, Y. Li, and X. Wu. Protecting business intelligence
and customer privacy while outsourcing data mining tasks.
Know. and Inf. Sys., 17(1):99-120, 2008.
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Security in Outsourcing of
Association Rule Mining

W.K. Wong, D.W. Cheung, E. Hung, B. Kao, N. Mamoulis.

P




Background knowledge

o Where does the attacker get knowledge?
(Assumption)
In many cases, the statistics of the global
industry is public (background knowledge)
o Background Knowledge (with two parameters)

alpha: knows alpha% of large itemsets in
original database

beta: the support in the knowledge is in the
range

o real support * (1 = beta)

P



Framework

Generation of mappings
One-to-n mappings
ltem Extend

Transformation of transactions
Mapping f(x)

CQitheate nf 11INniIATI2 MAannin
W AN INNIUAI VI UAlL \ 4 Illur.lr.ll

N cat
1 Iu W/ L

Fake items

Recovering association rules
Reverse mappings and filtering




Generation of mappings

One-to-n vs one-to-one?
Intuitively, one-to-n should be more secure

Unfortunate Scenario:
one-to-n + item mapping = one-to-one + item mapping
Solution :

Add a random component to transaction transformation
It will make one-to-n always better (more secure) than

one-to-one




One-to-n Transformation

one-to-one mapping
a->{1}b->{2}, ..
t={a, b} > t={12"}

one-to-n mapping
a->{1,3},b->{2, 3}, ..
t={a, b} > t't={1, 2,3} Randomly

one-to-n transformation generated
a->{1,3%b->{2,3%, .. ¥
t={a, b} > t={1,2,3,4,6}




Transaction transformation

o M: 21 -> 2B, based on a one-to-n
itemset mapping m
o N: transaction transformation
Maps from 2! to 25YF
ot ' =N(t) =M(t)UE

Eis a random subset of BU F; F is a
set of items not in B

o NL(t) = {x | m(x) in t"}

P
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e transformatio

N(t) = M(t) UE

Tr

{a} —
bl 2> (1,4 5
{c} b -> {2}
{E\_, b} cC-> {3, 5}
{a, ¢} —
{b, ¢} |a-> {13
{a, b, c}yb->{2;
c-> {3}

e

‘e

{1, 4, 5}

{2, 1, 3}

{3, 5,4}

{1, 2,4, 5}
{1, 3,4,5}
{2,3,5, 1}
{1, 2,3,4,5}




Protecting business intelligence and customer
privacy while outsourcing data mining tasks

L. Qiu, Y. Li, and X. Wu
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What we want to protect?

When outsourcing mining tasks to protect the
following three elements which may expose Bl
and customer privacy:

the source data which contain all transactions and
items;

the mining requests which are itemsets of interests;
the mining results which are frequent itemsets and

association rules.




Framework

Goal: how to outsource the association rule data mining
tasks, at the same time, protect Bl and customer privacy

A Bloom filter based approach is proposed

Bloom filter is a simple, space-efficient, randomized data
structure for representing a set of objects so as to
support membership queries

Definition 3.1 Given an n-element set S = {sy, ..., s,} and k hash functions h. ..., hy
of range m. the Bloom filter of §, denoted as B(S), is a binary vector of length m that 1s
constructed by the following steps: (1) every bit is initially set to 0; (i1) every element s € S 1s
hashed into the bit vector through the k hash functions, and the corresponding bits /; (s) are
set to 1.* A Bloom filter function, denoted as B(-), is a mapping from a set (not necessarily
n-element set) to its Bloom filter.




Process

Source data are converted to Bloom filter representation and
handed over to a third party together with mining algorithms

The first party sends its mining requests to the third party

Mining requests are actually candidates of frequent itemsets
which are also represented by Bloom filters

Lastly, the third party runs the mining algorithms with source
data and mining requests, and comes out the mining results
which are

frequent itemsets or association rules represented by Bloom filters

P

The third party would not be able to distill down private
information from Bloom filters.




Problem Definition

Problem 2 Our research problem: privacy preserving frequent itemsets mining. Given (1)
a collection of Bloom filters {B(Ty), ..., B(In)} for transaction database D over I, (1) a
set of Bloom filters {B(Iy), ..., B(Ig)} for items in I, and (ii1) a threshold T € [0, 1], find
all Bloom filters B(FS) of itemsets F S € 2L such that freq(FS) > 1.

A framework of this method is based on an algorithm that
computes the frequent patterns from Bloom Filters

Thi algorithm has 3 steps
counting phase
pruning phase
candidates generating phase




Algorithm

Algorithm 1 Mining frequent itemsets from Bloom filters

1: Cy = {B(),..., B(la)} /I B(I;) is the Bloom filter of item I;
2ofor(i=1; Cy #@; £++) do

3. foreach B(S) € Cy and each transaction filter B(T;) do

4: it § Cp T; then Bsupport(S) ++ 1§ Cp T; iff B(S) A B(T;) = B(S5)
3  end for

6: foreach B(S) € Cy do

T.

8

if Bsupport(S) = N .t/ then delete B(S) from Cy /I 1’ is the revised threshold in data mining

. end for
9: Fy =0y /I Fy 1s the collection of Bloom filters of all “frequent” itemsets with length £
10: Cypqpy =can_gen(Fy) /I generate filters of candidate itemsets for the next round
11: end for

12: Answer = | J; Fy /I all filters of frequent itemsets




