The UniversAAL Platform

Alexander Kocian

Department of Computer Science University of Pisa Largo B. Pontecorvo 3 56127 Pisa

2014/2015

Alexander Kocian (UniPisa)

The UniversAAL Platform

2014/2015 1 / 39

∃ → < ∃</p>

Table of Contents

- Prom Challenges to Solutions
- OSGi component based platform
 - 4 Middleware
- 5 Experimentation with the UniversAAL Platform

What is UniversAAL ?^[1]

In fact, UNIVERsal open platform and reference Specification for Ambient Assisted Living is a piece of software.

Definition

UniversAAL is an open-source software platform for AT where various, **heterogeneous** technical devices may be connected to a single, unified network.

Alert

The MS Windows and Apple MacOS platforms are only able to handle **homogeneous** technical devices.

Devices

The technical devices are either sensors or actuators or both.

- Sensors provide the system with information about the current state of the environment (so-called "contextual information"). Examples: pressure sensor, motion sensor, brightness sensor, camera, clock,...
- Actuators can be used by the system to influence the current state of the environment. Examples: heater, TV, electric window,...

Support Platform

The universAAL platform is called a Platform, because it is more than just a software layer that lies **between operating system and the applications in a distributed computer network** (aka "Middleware)

- **Runtime Support** (Implementation of the Execution Environment)
- **Development Support** (a suite of SW tools for supporting the SW developer)
- **Community Support** (a suite of SW facilities and technical infrastructure to assist end users, service providers and developers in community-building)

Introduction

A Layer Representation of the Platform

• The platform can logically be divided into various layers: Middleware, Managers, Applications.

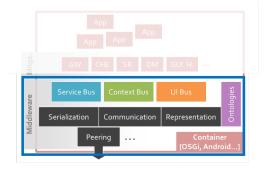


Figure: Layered Model^[2]

The Middleware Layer

- It needs to be available on every active node.
- Its task is to hide the distribution and hetereogenity of the nodes.
- Each communication bus (Context-Bus, Service-Bus, User-Interaction-Bus) handles a specific type of message.

The Middleware (cont'd)

• The Context-Bus is responsible for sharing context information, i.e. sharing knowledge that is used to dynamically adapt services from application to the user and vice versa^[3].

Examples of context

identity, location (geographical data), status (temperature, ambient illumination, noise level) and time^[4].

- The Service-Bus is responsible for sharing access to the service, i.e. sharing functionality.
- The User-Interaction-Bus is responsible for sharing information to active user interaction

Alexander Kocian (UniPisa)

The UniversAAL Platform

2014/2015 8 / 39

The Application Platform

The Application Platform

The Application Platform

The Application Platform

The Application Platform

The challenge - running applications on multiple hetereogeneous devices.

2014/2015 9 / 39

The Application Platform

The challenge - running applications on multiple hetereogeneous devices.

The UniversAAL Platform

The Application Platform

The Application Platform

The challenge - running applications on multiple hetereogeneous devices.

2014/2015 9 / 39

Heterogeneity of the devices

- Independent development and production of consumer items.
- Ability to exchange data depends on
 - Networking protocol (switching and routing)
 - Access protocol (synchronization, FEC)
 - Data representation (compression, encryption)
- Several application domains
- Several standards per application domain
- Several application profiles per standard
- What to do if all are relevant?

Middleware solutions

- For "AAL" components, a main protocol for networking & communication, optimally based on a single solution for data representation
- Integration of legacy components through adapters
 - Networking layer: protocol-specific gateways
 - Link and Presentation layers: component-specific wrappers

Devices can come and go

Alexander Kocian (UniPisa)

The UniversAAL Platform

▶ ▲ 王 ▶ 王 ∽ ۹ ୯ 2014/2015 12 / 39

Devices can come and go

• Mobile devices - smart phones, body sensors, portable audio players

Devices can come and go

- Mobile devices smart phones, body sensors, portable audio players
- can be switched on and off

Devices can come and go

- Mobile devices smart phones, body sensors, portable audio players
- can be switched on and off
- can fail and be restarted

Devices can come and go

- Mobile devices smart phones, body sensors, portable audio players
- can be switched on and off
- can fail and be restarted

Applications can come and go

Devices can come and go

- Mobile devices smart phones, body sensors, portable audio players
- can be switched on and off
- can fail and be restarted

Applications can come and go

• can be installed, updated, uninstalled

Devices can come and go

- Mobile devices smart phones, body sensors, portable audio players
- can be switched on and off
- can fail and be restarted

Applications can come and go

- can be installed, updated, uninstalled
- can fail and be restarted

Devices can come and go

- Mobile devices smart phones, body sensors, portable audio players
- can be switched on and off
- can fail and be restarted

Applications can come and go

- can be installed, updated, uninstalled
- can fail and be restarted

It is **not feasible to restart** the platform for any change in a device/an application.

Devices can come and go

- Mobile devices smart phones, body sensors, portable audio players
- can be switched on and off
- can fail and be restarted

Applications can come and go

- can be installed, updated, uninstalled
- can fail and be restarted

It is **not feasible to restart** the platform for any change in a device/an application. The platform and the application should auto-**adapt** to any change.

Alexander Kocian (UniPisa)

The UniversAAL Platform

2014/2015 12 / 39

The Solution: Open Service Gateway initiative (OSGi)^[5]

UNIVERSITÀ DI

The Solution: Open Service Gateway initiative (OSGi)^[5]

• is a specification.

The Solution: Open Service Gateway initiative (OSGi)^[5]

- is a specification.
- The core of the spec defines a **component and service** model for Java (R).

The Solution: Open Service Gateway initiative (OSGi)^[5]

- is a specification.
- The core of the spec defines a **component and service** model for Java (R).
- Components and services (i.e. Java interfaces) can be **dynamically** installed, started, stopped, updated and uninstalled **without restarting the container**.

The Solution: Open Service Gateway initiative (OSGi)^[5]

- is a specification.
- The core of the spec defines a **component and service** model for Java (R).
- Components and services (i.e. Java interfaces) can be **dynamically** installed, started, stopped, updated and uninstalled **without restarting the container**.
- OSGi has several implementations, such as Equinox, Knopflerfish OSGi or **Apache Felix**.

• Services are packaged into bundles.

- Services are packaged into bundles.
- Bundles are a cohesive, self-contained units of functionality.

- Services are packaged into bundles.
- Bundles are a cohesive, self-contained units of functionality.
- Technically, OSGi bundles are .jar files with additional meta information (images, libraries,...), stored in MANIFEST.MF file.

- Services are packaged into bundles.
- Bundles are a cohesive, self-contained units of functionality.
- Technically, OSGi bundles are .jar files with additional meta information (images, libraries,...), stored in MANIFEST.MF file.
- Dependencies to other modules and services are explicitly defined via MANIFEST.MF.

OSGi Bundles

- Services are packaged into bundles.
- Bundles are a cohesive, self-contained units of functionality.
- Technically, OSGi bundles are .jar files with additional meta information (images, libraries,...), stored in MANIFEST.MF file.
- Dependencies to other modules and services are explicitly defined via MANIFEST.MF.
- Any non-OSGi runtime ignores the OSGi metadata.

OSGi Bundles

- Services are packaged into bundles.
- Bundles are a cohesive, self-contained units of functionality.
- Technically, OSGi bundles are .jar files with additional meta information (images, libraries,...), stored in MANIFEST.MF file.
- Dependencies to other modules and services are explicitly defined via MANIFEST.MF.
- Any non-OSGi runtime ignores the OSGi metadata.
- OSGi bundles have a life-cycle.

Bundle Lifecycle

- With install <.jar> in the OSGi runtime, the bundles are presisted in a local cache. A bundle ID is returned.
- With resolve, bundle dependencies are resolved.
- More bundles can be installed and resolved.

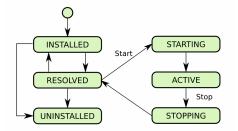


Figure: State Diagram of the Bundle life cycle

Bundle Lifecycle (cont'd)

- Next, start <bundle id>.
- The bundle is now runnig i.e., in active state.
- With stop <bundle id>, the bundle is still in the local bundle cache.
- uninstall <bundle id>, to remove the bundle from the cache.

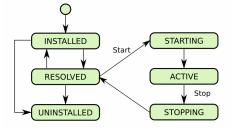
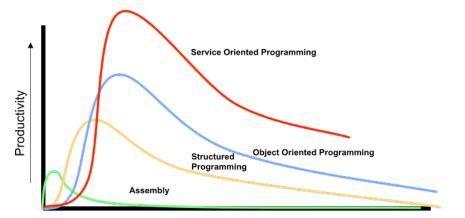



Figure: State Diagram of the Bundle life cycle

Complexity of Software

Complexity and Size

Figure: Complexity of SW^[6]

Alexander Kocian (UniPisa)

The UniversAAL Platform

2014/2015 17 / 39

OSGi - a service oriented architecture

Figure: Pattern for service-oriented component model^[7]

• An OSGi Service is defined by a standard Java® class or interface.

OSGi - a service oriented architecture

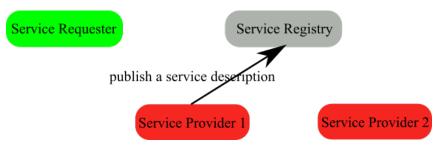


Figure: Pattern for service-oriented component model^[7]

• A bundle can register and use OSGi services.

OSGi - a service oriented architecture

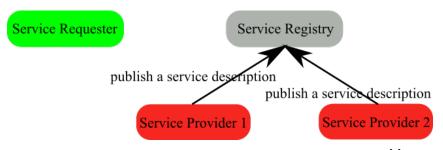


Figure: Pattern for service-oriented component model^[7]

• Another bundle can register and use OSGi services.

OSGi - a service oriented architecture

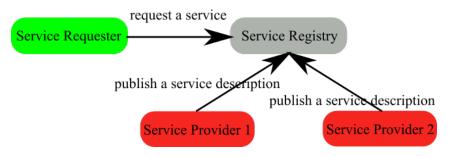


Figure: Pattern for service-oriented component model^[7]

• A service is requested.

OSGi - a service oriented architecture

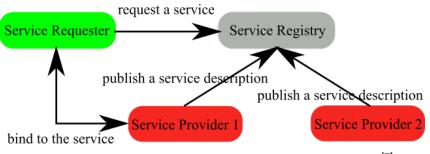
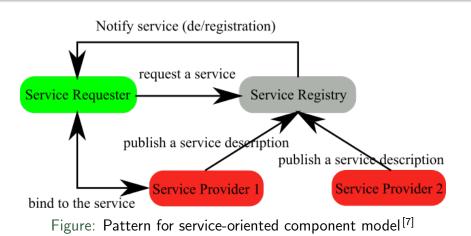



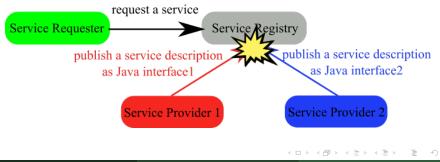
Figure: Pattern for service-oriented component model^[7]

• If several services are valid for the same API, then OSGi chooses that with lowest service ID.

Alexander Kocian (UniPisa)

OSGi - a service oriented architecture

• Service providers can be switched on the fly.


Alexander Kocian (UniPisa)

The UniversAAL Platform

Interoperability Problem

- The Service Requester and all Service Providers have to agree a priori on **exactly** the same service interface.
- Mismatch otherwise.

Semantic Services

Solution

Instead of directly connecting service provider with service interface, we apply reasoning using **ontology**.

Ontology in UniversAAL

Definition

- Ontology (from Greek: οντολογια) is the philosophical study of the nature of being.
- In computer science, an ontology is an "explicit specification of a conceptionalization" ^[8]. Simply, a model of the real world so that information in the model can be processed by computers.

Purpose

- Distribution of knowledge (Context Bus in uAAL)
- Sharing of functionalities (Service Bus in uAAL)

< 口 > < 同 >

- (E

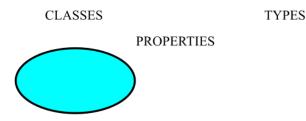
Distribution of Knowledge

Two apps that share knowledge interpret info by ontology in **exact** the same way.

Construction

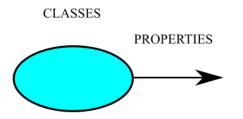
- Ontologies are made up of classes, properties, and data types.
- Every ontology has a uniform resource identifier URI.

A Taste of Resource Description Framework (RDF)

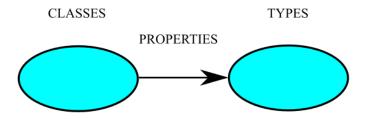

CLASSES

TYPES

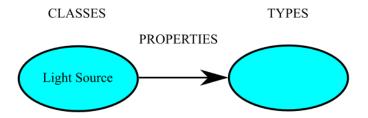
PROPERTIES



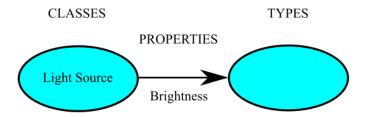
A Taste of Resource Description Framework (RDF)



A Taste of Resource Description Framework (RDF)

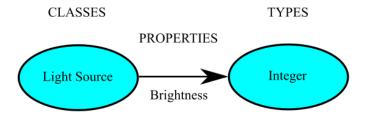

TYPES

A Taste of Resource Description Framework (RDF)


2014/2015 23 / 39

A Taste of Resource Description Framework (RDF)

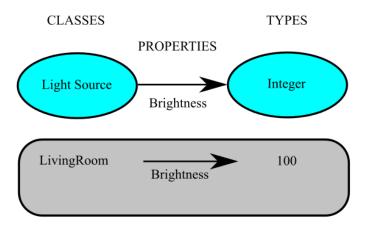
NIVERSITÀ DI PI


A Taste of Resource Description Framework (RDF)

2014/2015 23 / 39

NIVERSITÀ DI PIS

A Taste of Resource Description Framework (RDF)



2014/2015 23 / 39

Image: A matrix

NIVERSITÀ DI PIS

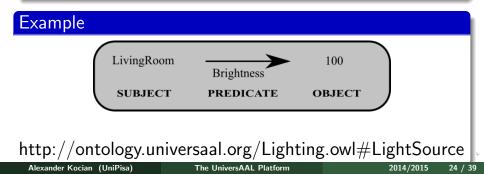
A Taste of Resource Description Framework (RDF)

UNIVERSITÀ DI PISA

Alexander Kocian (UniPisa)

The UniversAAL Platform

2014/2015 23 / 39


< 3 > < 3</p>

RDF Statement

Definition

- An RDF statement is a triple (subject, predicate, object)
- All subjects of RDF staements are resources with **Unique Resource Identifier** (URI)

Implementation in UniversAAL


```
public class LightSource extends PhysicalThing
{
    public static final String MY_URI =
    "http://ontology.persona.ima.igd.fhg.de/Lighting.owl#LightSource";
    public static final String PROP_AMBIENT_COVERAGE =
    "http://ontology.persona.ima.igd.fhg.de/Lighting.owl#ambientCoverage"
    public static final String PROP_HAS_TYPE =
    "http://ontology.persona.ima.igd.fhg.de/Lighting.owl#hasType";
    public static final String PROP_SOURCE_BRIGHTNESS =
    "http://ontology.persona.ima.igd.fhg.de/Lighting.owl#srcBrightness";
    }
```

Non-OSGi devices

The Problem

- JVM does not exist on every device;
- OSGi-like module framework for C does not emulate Java®features (bytecode, classloading,...);
- ergo, OSGi cannot be installed on every device.

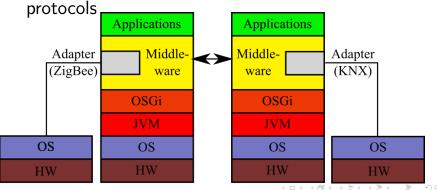
The Solution

Non-OSGi devices

The Problem

- JVM does not exist on every device;
- OSGi-like module framework for C does not emulate Java®features (bytecode, classloading,...);
- ergo, OSGi cannot be installed on every device.

The Solution


Adapters

Non-OSGi devices (cont'd)

Sensors added as external nodes via adapters

- as other low-computational-power devices
- or devices without JVM
- or devices not supporting the inter-middleware

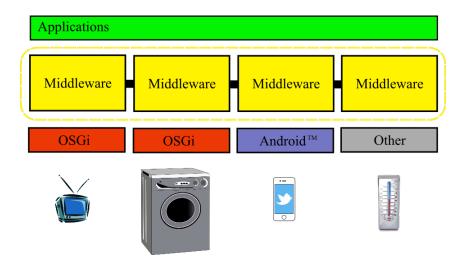
Android TM

- Operating system, Middleware, and application framework of Google (R).
- Open-source
- Implementations on
 - Cellular phones
 - Netbooks
 - Tablets
 - TV sets

Middleware

UniversAAL on Android TM

The UniversAAL middleware can directly be ported to Android $^{\mathsf{TM}}.$



2014/2015 29 / 39

Middleware

UniversAAL on any Device

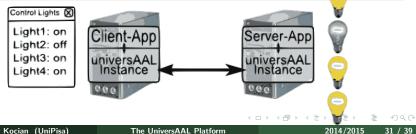
▶ ▲ 重 ▶ 重 少 Q (?) 2014/2015 30 / 39

<ロト <同ト < ヨト < ヨト

Experimentation with the UniversAAL Platform

Introductionary Example The Lightning Example

Scenario


- The client-app. makes a request.
- The Service Bus forwards the request to the serverapp., and switches the requested light on.
- Real lights can be switched on/off with slight modifications.

Experimentation with the UniversAAL Platform

Introductionary Example The Lightning Example

Scenario

- The client-app. makes a request.
- The Service Bus forwards the request to the serverapp., and switches the requested light on.
- Real lights can be switched on/off with slight modifications

Preparation

Register at

forge.universaal.org/wiki/support: RD_First_Steps

From the *Project*-tab, choose and join the groups Support and Ontologies;

Alexander Kocian (UniPisa)

The UniversAAL Platform

2014/2015 32 / 39

Install Software

Apache SubVersioN Client (SVN)

ortoiseSVN the coole	st interface to (Sub)version control	
Home About Downloads	Translations Support/Docs Other t	ools
	🔀 Tortoise	SVN
Info	Downloads	
About About TortoiseSVN	The current version is 1.8.8	
Screenshots Screenshots of various dialogs	For detailed info on what's new, read the ch	angelog and the release notes.
Festimonials What users say about	The current version 1.8.8 is linked against the	he Subversion library 1.8.10.
TortoiseSVN	Please make sure that you choose the right	installer for your PC, otherwise the setup will fail.
Vews archive	for 32-bit OS	for 64-bit OS
	Download Now sourceforge - Trusted for Open Source	Download Now source#orge - trusted for Open Source
Support	Tortoise9VN 18 8-32-bit	TortoiseSVN 1.8.8 - 64-bit
AQ Frequently asked questions	To verify the file integrity follow these instruc	tions.
telp files The complete documentation	LOOKING FOR AN S	SVN CLIENT FOR MAC OR LINUX?
Useful tips	Downle	and SmartSVN

Figure: free SVN client at tortoisesvn.net;

Check-out from fully-recursive repository forge.universaal.org/svn/support/;

Alexander Kocian (UniPisa)

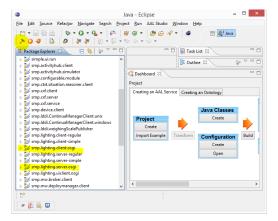
Install Software (cont'd)

- Java JDK6 (version!);
- Eclipse (with reference to Java JDK6);
- AAL Studio from http:
 - //depot.universAAL.org/eclipse-update

ile Edit So	ource R	efactor	Navigate	Search	Project	Run	Window	Help]	
	2 🗠 🛛	۲	* • O	- 🤬 -	8	ଙ ∙	ے ھ	۲	Welcome	
🛢 Package Ex	oplorer 8		-						Help Contents	
		Ξ	\$ 5	-					Search Dynamic Help	
									Key Assist Ctrl+Shift+L	
									Tips and Tricks	
									Report Bug or Enhancement Cheat Sheets	
									Check for Updates	
									Install New Software	
									Install Modeling Components	
									Eclipse Marketplace	
									About Eclipse	
										2
							L Pla			2

Experimentation with the UniversAAL Platform

Import the Sources into Eclipse



- Inside the Package Manager, Import: Maven: Existing Maven projects;
- Our samples are smp.lighting.server.osgi and smp.lighting.client.osgi ;
- Weep all projects selected!

Compile the Lighting Example

From the Package Explorer choose the two projects, and click on the hammer in AAL Studio;

2014/2015 36 / 39

< □ > < 同 > <

Run the Lighting Example

- Select tab Run:Run Configurations;
- Choose Example-Lighting-LATEST_Complete ;
- 🛽 Run.

On	or	r		Class	Method
Percer	x	Scale	Lamp Server	C. Contract	<u> </u>
Get Lamps				_	2
http://ontology.igd.fh	g.de/Lightin	gServer.owl#controlledLamp			2
		Server.owi#controlledLamp			
		3Server.owi#controlledLamp. 3Server.owi#controlledLamp.			
			_	_	_
					3
2013-1-10 10.1.30.303	DEDUG	niw.oos.service.osgi			3
2013-7-16 18:1:36.966	DEBUG	mw.data.representation	210		3
2013-7-16 18:1:36.966 2013-7-16 18:1:36.971	DEBUG	mw.data.representation	210		3
013-7-16 18:1:36.966	DEBUG	mw.data.representation mw.bus.service.osgi mw.bus.service.osgi			3

References

- UniversAAL. Universal open platform and reference specification for ambient assisted living. url = "http://www.universaal.org/index.php/es/about/about-deliverables", 2013. Retrieved on November 3 ,2014.
- [2] M. Mosmondor. universAAL: Technical insights. In AAL Interoperability Days (MACSI 2014), European commission, Brussels, Belgium, February 2014.
- [3] A. Dey and G. Abowd. Towards a better understanding of context and context awareness. In *in Proc. Workshop on the What, Who, Where, When and How of Context-Awareness, affiliated with the CHI 2000 Conf. on Human Factors in Computing Systems,* The Hague, The Netherlands, April 2000.
- [4] M. Debes, A. Lewandowska, and J. Seitz. Definition and Implementation of Context Information. In in Proc. 2nd Workshop on Positioning, Navigation and Communication & 1st Ultra-Wideband Expert Talk (UET'05), 2005.

References (cont'd)

- [5] Lars Vogel. OSGi Modularity Tutorial. url = "http://www.vogella.com/tutorials/OSGi/article.html". Retrieved on November 18, 2014.
- [6] P. Kriens. When Applications can Roam Freely. In Panel of Consumer Communications & Networking Conference 2006 (CCNC 2006), January 2006.
- [7] H. Cervantes and R. S. Hall. Automating Service Dependency Management in a Service-Oriented Component Model. In Proc. 6th Workshop on Component-Based Software Engineering, May 2003.
- [8] T. Gruber. Toward Principles for the Design of Ontologies Used For Knowledge Sharing. Int. Journal Human-Computer Studies, 43:907–928, November 1995.