
The UniversAAL Platform

Alexander Kocian

Department of Computer Science
University of Pisa

Largo B. Pontecorvo 3
56127 Pisa

2014/2015

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 1 / 39



Table of Contents

1 Introduction

2 From Challenges to Solutions

3 OSGi component based platform

4 Middleware

5 Experimentation with the UniversAAL Platform

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 2 / 39



Introduction

What is UniversAAL ?[1]

In fact, UNIVERsal open platform and reference Specifi-
cation for Ambient Assisted Living is a piece of software.

Definition
UniversAAL is an open-source software platform for AT
where various, heterogeneous technical devices may be
connected to a single, unified network.

Alert
The MS Windows and Apple MacOS platforms are only
able to handle homogeneous technical devices.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 3 / 39



Introduction

Devices

The technical devices are either sensors or actuators or
both.

Sensors provide the system with information about
the current state of the environment (so-called “con-
textual information”). Examples: pressure sensor,
motion sensor, brightness sensor, camera, clock,...

Actuators can be used by the system to influence the
current state of the environment. Examples: heater,
TV, electric window,...

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 4 / 39



Introduction

Support Platform

The universAAL platform is called a Platform, because it
is more than just a software layer that lies between op-
erating system and the applications in a distributed
computer network (aka “Middleware)

Runtime Support (Implementation of the Execution
Environment)

Development Support (a suite of SW tools for sup-
porting the SW developer)

Community Support (a suite of SW facilities and
technical infrastructure to assist end users, service
providers and developers in community-building)

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 5 / 39



Introduction

A Layer Representation of the Platform

The platform can logically be divided into various lay-
ers: Middleware, Managers, Applications.

Figure: Layered Model [2]

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 6 / 39



Introduction

The Middleware Layer

It needs to be available on every active node.

Its task is to hide the distribution and hetereogenity
of the nodes.

Each communication bus (Context-Bus, Service-Bus,
User-Interaction-Bus) handles a specific type of mes-
sage.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 7 / 39



Introduction

The Middleware (cont’d)

The Context-Bus is responsible for sharing context
information, i.e. sharing knowledge that is used to
dynamically adapt services from application to the
user and vice versa [3].

Examples of context

identity, location (geographical data), status
(temperature, ambient illumination, noise level) and
time [4].

The Service-Bus is responsible for sharing access to
the service, i.e. sharing functionality.
The User-Interaction-Bus is responsible for sharing
information to active user interaction.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 8 / 39



From Challenges to Solutions

The Application Platform

The challenge - running applications on multiple hetereo-
geneous devices.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 9 / 39



From Challenges to Solutions

The Application Platform

The challenge - running applications on multiple hetereo-
geneous devices.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 9 / 39



From Challenges to Solutions

The Application Platform

The challenge - running applications on multiple hetereo-
geneous devices.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 9 / 39



From Challenges to Solutions

The Application Platform

The challenge - running applications on multiple hetereo-
geneous devices.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 9 / 39



From Challenges to Solutions

The Application Platform

The challenge - running applications on multiple hetereo-
geneous devices.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 9 / 39



From Challenges to Solutions

The Application Platform

The challenge - running applications on multiple hetereo-
geneous devices.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 9 / 39



From Challenges to Solutions

The Application Platform

The challenge - running applications on multiple hetereo-
geneous devices.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 9 / 39



From Challenges to Solutions

The Application Platform

The challenge - running applications on multiple hetereo-
geneous devices.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 9 / 39



From Challenges to Solutions

Heterogeneity of the devices

Independent development and production
of consumer items.
Ability to exchange data depends on

Networking protocol (switching and routing)
Access protocol (synchronization,FEC)
Data representation (compression, encryp-
tion)

Several application domains

Several standards per application domain

Several application profiles per standard

What to do if all are relevant?

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 10 / 39



From Challenges to Solutions

Middleware solutions

For “AAL” components, a main
protocol for networking & commu-
nication, optimally based on a single
solution for data representation
Integration of legacy components
through adapters

Networking layer: protocol-specific
gateways
Link and Presentation layers:
component-specific wrappers

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 11 / 39



From Challenges to Solutions

Challenges

Devices can come and go

Mobile devices - smart phones, body sensors, portable
audio players

can be switched on and off

can fail and be restarted

Applications can come and go

can be installed, updated, uninstalled

can fail and be restarted

It is not feasible to restart the platform for any change in
a device/an application. The platform and the application
should auto-adapt to any change.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 12 / 39



From Challenges to Solutions

Challenges

Devices can come and go

Mobile devices - smart phones, body sensors, portable
audio players

can be switched on and off

can fail and be restarted

Applications can come and go

can be installed, updated, uninstalled

can fail and be restarted

It is not feasible to restart the platform for any change in
a device/an application. The platform and the application
should auto-adapt to any change.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 12 / 39



From Challenges to Solutions

Challenges

Devices can come and go

Mobile devices - smart phones, body sensors, portable
audio players

can be switched on and off

can fail and be restarted

Applications can come and go

can be installed, updated, uninstalled

can fail and be restarted

It is not feasible to restart the platform for any change in
a device/an application. The platform and the application
should auto-adapt to any change.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 12 / 39



From Challenges to Solutions

Challenges

Devices can come and go

Mobile devices - smart phones, body sensors, portable
audio players

can be switched on and off

can fail and be restarted

Applications can come and go

can be installed, updated, uninstalled

can fail and be restarted

It is not feasible to restart the platform for any change in
a device/an application. The platform and the application
should auto-adapt to any change.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 12 / 39



From Challenges to Solutions

Challenges

Devices can come and go

Mobile devices - smart phones, body sensors, portable
audio players

can be switched on and off

can fail and be restarted

Applications can come and go

can be installed, updated, uninstalled

can fail and be restarted

It is not feasible to restart the platform for any change in
a device/an application. The platform and the application
should auto-adapt to any change.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 12 / 39



From Challenges to Solutions

Challenges

Devices can come and go

Mobile devices - smart phones, body sensors, portable
audio players

can be switched on and off

can fail and be restarted

Applications can come and go

can be installed, updated, uninstalled

can fail and be restarted

It is not feasible to restart the platform for any change in
a device/an application. The platform and the application
should auto-adapt to any change.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 12 / 39



From Challenges to Solutions

Challenges

Devices can come and go

Mobile devices - smart phones, body sensors, portable
audio players

can be switched on and off

can fail and be restarted

Applications can come and go

can be installed, updated, uninstalled

can fail and be restarted

It is not feasible to restart the platform for any change in
a device/an application. The platform and the application
should auto-adapt to any change.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 12 / 39



From Challenges to Solutions

Challenges

Devices can come and go

Mobile devices - smart phones, body sensors, portable
audio players

can be switched on and off

can fail and be restarted

Applications can come and go

can be installed, updated, uninstalled

can fail and be restarted

It is not feasible to restart the platform for any change in
a device/an application.

The platform and the application
should auto-adapt to any change.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 12 / 39



From Challenges to Solutions

Challenges

Devices can come and go

Mobile devices - smart phones, body sensors, portable
audio players

can be switched on and off

can fail and be restarted

Applications can come and go

can be installed, updated, uninstalled

can fail and be restarted

It is not feasible to restart the platform for any change in
a device/an application. The platform and the application
should auto-adapt to any change.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 12 / 39



OSGi component based platform

The Solution: Open Service Gateway
initiative (OSGi)[5]

is a specification.

The core of the spec defines a component and ser-
vice model for Java R©.

Components and services (i.e. Java interfaces) can
be dynamically installed, started, stopped, updated
and uninstalled without restarting the container.

OSGi has several implementations, such as Equinox,
Knopflerfish OSGi or Apache Felix.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 13 / 39



OSGi component based platform

The Solution: Open Service Gateway
initiative (OSGi)[5]

is a specification.

The core of the spec defines a component and ser-
vice model for Java R©.

Components and services (i.e. Java interfaces) can
be dynamically installed, started, stopped, updated
and uninstalled without restarting the container.

OSGi has several implementations, such as Equinox,
Knopflerfish OSGi or Apache Felix.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 13 / 39



OSGi component based platform

The Solution: Open Service Gateway
initiative (OSGi)[5]

is a specification.

The core of the spec defines a component and ser-
vice model for Java R©.

Components and services (i.e. Java interfaces) can
be dynamically installed, started, stopped, updated
and uninstalled without restarting the container.

OSGi has several implementations, such as Equinox,
Knopflerfish OSGi or Apache Felix.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 13 / 39



OSGi component based platform

The Solution: Open Service Gateway
initiative (OSGi)[5]

is a specification.

The core of the spec defines a component and ser-
vice model for Java R©.

Components and services (i.e. Java interfaces) can
be dynamically installed, started, stopped, updated
and uninstalled without restarting the container.

OSGi has several implementations, such as Equinox,
Knopflerfish OSGi or Apache Felix.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 13 / 39



OSGi component based platform

The Solution: Open Service Gateway
initiative (OSGi)[5]

is a specification.

The core of the spec defines a component and ser-
vice model for Java R©.

Components and services (i.e. Java interfaces) can
be dynamically installed, started, stopped, updated
and uninstalled without restarting the container.

OSGi has several implementations, such as Equinox,
Knopflerfish OSGi or Apache Felix.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 13 / 39



OSGi component based platform

OSGi Bundles

Services are packaged into bundles.

Bundles are a cohesive, self-contained units of func-
tionality.

Technically, OSGi bundles are .jar files with addi-
tional meta information (images, libraries,...), stored
in MANIFEST.MF file.

Dependencies to other modules and services are ex-
plicitly defined via MANIFEST.MF.

Any non-OSGi runtime ignores the OSGi metadata.

OSGi bundles have a life-cycle.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 14 / 39



OSGi component based platform

OSGi Bundles

Services are packaged into bundles.

Bundles are a cohesive, self-contained units of func-
tionality.

Technically, OSGi bundles are .jar files with addi-
tional meta information (images, libraries,...), stored
in MANIFEST.MF file.

Dependencies to other modules and services are ex-
plicitly defined via MANIFEST.MF.

Any non-OSGi runtime ignores the OSGi metadata.

OSGi bundles have a life-cycle.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 14 / 39



OSGi component based platform

OSGi Bundles

Services are packaged into bundles.

Bundles are a cohesive, self-contained units of func-
tionality.

Technically, OSGi bundles are .jar files with addi-
tional meta information (images, libraries,...), stored
in MANIFEST.MF file.

Dependencies to other modules and services are ex-
plicitly defined via MANIFEST.MF.

Any non-OSGi runtime ignores the OSGi metadata.

OSGi bundles have a life-cycle.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 14 / 39



OSGi component based platform

OSGi Bundles

Services are packaged into bundles.

Bundles are a cohesive, self-contained units of func-
tionality.

Technically, OSGi bundles are .jar files with addi-
tional meta information (images, libraries,...), stored
in MANIFEST.MF file.

Dependencies to other modules and services are ex-
plicitly defined via MANIFEST.MF.

Any non-OSGi runtime ignores the OSGi metadata.

OSGi bundles have a life-cycle.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 14 / 39



OSGi component based platform

OSGi Bundles

Services are packaged into bundles.

Bundles are a cohesive, self-contained units of func-
tionality.

Technically, OSGi bundles are .jar files with addi-
tional meta information (images, libraries,...), stored
in MANIFEST.MF file.

Dependencies to other modules and services are ex-
plicitly defined via MANIFEST.MF.

Any non-OSGi runtime ignores the OSGi metadata.

OSGi bundles have a life-cycle.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 14 / 39



OSGi component based platform

OSGi Bundles

Services are packaged into bundles.

Bundles are a cohesive, self-contained units of func-
tionality.

Technically, OSGi bundles are .jar files with addi-
tional meta information (images, libraries,...), stored
in MANIFEST.MF file.

Dependencies to other modules and services are ex-
plicitly defined via MANIFEST.MF.

Any non-OSGi runtime ignores the OSGi metadata.

OSGi bundles have a life-cycle.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 14 / 39



OSGi component based platform

Bundle Lifecycle

With install <.jar>

in the OSGi runtime,
the bundles are pre-
sisted in a local cache.
A bundle ID is returned.

With resolve, bun-
dle dependencies are re-
solved.

More bundles can be in-
stalled and resolved.

Figure: State Diagram of the
Bundle life cycle

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 15 / 39



OSGi component based platform

Bundle Lifecycle (cont’d)

Next, start <bundle

id>.

The bundle is now run-
nig i.e., in active state.

With stop <bundle

id>, the bundle is still
in the local bundle
cache.

uninstall <bundle

id>, to remove the
bundle from the cache.

Figure: State Diagram of the
Bundle life cycle

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 16 / 39



OSGi component based platform

Complexity of Software

Figure: Complexity of SW [6]

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 17 / 39



OSGi component based platform

OSGi - a service oriented architecture

Figure: Pattern for service-oriented component model [7]

An OSGi Service is defined by a standard
Java R© class or interface.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 18 / 39



OSGi component based platform

OSGi - a service oriented architecture

Figure: Pattern for service-oriented component model [7]

A bundle can register and use OSGi services.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 18 / 39



OSGi component based platform

OSGi - a service oriented architecture

Figure: Pattern for service-oriented component model [7]

Another bundle can register and use OSGi services.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 18 / 39



OSGi component based platform

OSGi - a service oriented architecture

Figure: Pattern for service-oriented component model [7]

A service is requested.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 18 / 39



OSGi component based platform

OSGi - a service oriented architecture

Figure: Pattern for service-oriented component model [7]

If several services are valid for the same API, then
OSGi chooses that with lowest service ID.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 18 / 39



OSGi component based platform

OSGi - a service oriented architecture

Figure: Pattern for service-oriented component model [7]

Service providers can be switched on the fly.
Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 18 / 39



OSGi component based platform

Interoperability Problem

The Service Requester and all Service Providers
have to agree a priori on exactly the same service
interface.

Mismatch otherwise.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 19 / 39



OSGi component based platform

Semantic Services

Solution
Instead of directly connecting service provider with service
interface, we apply reasoning using ontology.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 20 / 39



OSGi component based platform

Ontology in UniversAAL

Definition

Ontology (from Greek: oντoλoγια) is the
philosophical study of the nature of being.

In computer science, an ontology is an “explicit
specification of a conceptionalization” [8]. Simply, a
model of the real world so that information in the
model can be processed by computers.

Purpose

Distribution of knowledge (Context Bus in uAAL)

Sharing of functionalities (Service Bus in uAAL)

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 21 / 39



OSGi component based platform

Distribution of Knowledge

Two apps that share knowledge interpret info by
ontology in exact the same way.

Construction
Ontologies are made up of classes, properties, and
data types.

Every ontology has a uniform resource identifier
URI.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 22 / 39



OSGi component based platform

A Taste of Resource Description
Framework (RDF)

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 23 / 39



OSGi component based platform

A Taste of Resource Description
Framework (RDF)

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 23 / 39



OSGi component based platform

A Taste of Resource Description
Framework (RDF)

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 23 / 39



OSGi component based platform

A Taste of Resource Description
Framework (RDF)

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 23 / 39



OSGi component based platform

A Taste of Resource Description
Framework (RDF)

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 23 / 39



OSGi component based platform

A Taste of Resource Description
Framework (RDF)

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 23 / 39



OSGi component based platform

A Taste of Resource Description
Framework (RDF)

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 23 / 39



OSGi component based platform

A Taste of Resource Description
Framework (RDF)

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 23 / 39



OSGi component based platform

RDF Statement

Definition

An RDF statement is a triple (subject, predicate,
object)

All subjects of RDF staements are resources with
Unique Resource Identifier (URI)

Example

http://ontology.universaal.org/Lighting.owl#LightSource
Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 24 / 39



OSGi component based platform

Implementation in UniversAAL

public class LightSource extends PhysicalThing

{

public static final String MY_URI =

"http :// ontology.persona.ima.igd.fhg.de/Lighting.owl#LightSource";

public static final String PROP_AMBIENT_COVERAGE =

"http :// ontology.persona.ima.igd.fhg.de/Lighting.owl#ambientCoverage";

public static final String PROP_HAS_TYPE =

"http :// ontology.persona.ima.igd.fhg.de/Lighting.owl#hasType";

public static final String PROP_SOURCE_BRIGHTNESS =

"http :// ontology.persona.ima.igd.fhg.de/Lighting.owl#srcBrightness";

}

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 25 / 39



Middleware

Non-OSGi devices

The Problem
JVM does not exist on every device;

OSGi-like module framework for C does not emulate
Java R©features (bytecode, classloading,...);

ergo, OSGi cannot be installed on every device.

The Solution

Adapters

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 26 / 39



Middleware

Non-OSGi devices

The Problem
JVM does not exist on every device;

OSGi-like module framework for C does not emulate
Java R©features (bytecode, classloading,...);

ergo, OSGi cannot be installed on every device.

The Solution
Adapters

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 26 / 39



Middleware

Non-OSGi devices (cont’d)

Sensors added as external nodes via adapters
as other low-computational-power devices
or devices without JVM
or devices not supporting the inter-middleware
protocols

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 27 / 39



Middleware

Android TM

Operating system, Middleware, and
application framework of Google R©.

Open-source
Implementations on

Cellular phones
Netbooks
Tablets
TV sets

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 28 / 39



Middleware

UniversAAL on Android TM

The UniversAAL middleware can directly be
ported to Android TM.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 29 / 39



Middleware

UniversAAL on any Device

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 30 / 39



Experimentation with the UniversAAL Platform

Introductionary Example
The Lightning Example

Scenario
The client-app. makes a request.

The Service Bus forwards the request to the server-
app., and switches the requested light on.

Real lights can be switched on/off with slight modi-
fications.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 31 / 39



Experimentation with the UniversAAL Platform

Introductionary Example
The Lightning Example

Scenario
The client-app. makes a request.

The Service Bus forwards the request to the server-
app., and switches the requested light on.

Real lights can be switched on/off with slight modi-
fications.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 31 / 39



Experimentation with the UniversAAL Platform

Preparation

1 Register at
forge.universaal.org/wiki/support:

RD_First_Steps

;
2 From the Project-tab, choose and join the groups

Support and Ontologies;
Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 32 / 39

forge.universaal.org/wiki/support:RD_First_Steps
forge.universaal.org/wiki/support:RD_First_Steps


Experimentation with the UniversAAL Platform

Install Software

3 Apache SubVersioN Client (SVN)

Figure: free SVN client at tortoisesvn.net;

4 Check-out from fully-recursive repository
forge.universaal.org/svn/support/;

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 33 / 39

tortoisesvn.net
forge.universaal.org/svn/support/


Experimentation with the UniversAAL Platform

Install Software (cont’d)

5 Java JDK6 (version!);
6 Eclipse (with reference to Java JDK6) ;
7 AAL Studio from http:

//depot.universAAL.org/eclipse-update

Figure: AAL studio;
Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 34 / 39

http://depot.universAAL.org/eclipse-update
http://depot.universAAL.org/eclipse-update


Experimentation with the UniversAAL Platform

Import the Sources into Eclipse

8 Inside the Package Manager, Import: Maven:
Existing Maven projects;

9 Our samples are smp.lighting.server.osgi and
smp.lighting.client.osgi ;

10 Keep all projects selected!

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 35 / 39



Experimentation with the UniversAAL Platform

Compile the Lighting Example

11 From the Package Explorer choose the two projects,
and click on the hammer in AAL Studio;

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 36 / 39



Experimentation with the UniversAAL Platform

Run the Lighting Example

12 Select tab Run:Run Configurations;
13 Choose Example-Lighting-LATEST Complete ;
14 Run.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 37 / 39



Experimentation with the UniversAAL Platform

References

[1] UniversAAL. Universal open platform and reference specification for
ambient assisted living. url =
”http://www.universaal.org/index.php/es/about/about-deliverables”, 2013.
Retrieved on November 3 ,2014.

[2] M. Mosmondor. universAAL: Technical insights. In AAL Interoperability
Days (MACSI 2014), European commission, Brussels, Belgium, February
2014.

[3] A. Dey and G. Abowd. Towards a better understanding of context and
context awareness. In in Proc. Workshop on the What, Who, Where, When
and How of Context-Awareness, affiliated with the CHI 2000 Conf. on
Human Factors in Computing Systems, The Hague, The Netherlands, April
2000.

[4] M. Debes, A. Lewandowska, and J. Seitz. Definition and Implementation of
Context Information. In in Proc. 2nd Workshop on Positioning, Navigation
and Communication & 1st Ultra-Wideband Expert Talk (UET’05), 2005.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 38 / 39



Experimentation with the UniversAAL Platform

References (cont’d)

[5] Lars Vogel. OSGi Modularity - Tutorial. url =
”http://www.vogella.com/tutorials/OSGi/article.html”. Retrieved on
November 18, 2014.

[6] P. Kriens. When Applications can Roam Freely. In Panel of Consumer
Communications & Networking Conference 2006 (CCNC 2006), January
2006.

[7] H. Cervantes and R. S. Hall. Automating Service Dependency Management
in a Service-Oriented Component Model. In Proc. 6th Workshop on
Component-Based Software Engineering, May 2003.

[8] T. Gruber. Toward Principles for the Design of Ontologies Used For
Knowledge Sharing. Int. Journal Human-Computer Studies, 43:907–928,
November 1995.

Alexander Kocian (UniPisa) The UniversAAL Platform 2014/2015 39 / 39


	Introduction
	From Challenges to Solutions
	OSGi component based platform
	Middleware
	Experimentation with the UniversAAL Platform

