Corso di Reti mobili

Reti ad hoc & Reti di Sensori

Stefano Chessa

- Introduzione (2 ore, Chessa)
- Reti ad hoc (6 ore, Pelagatti)
 - Standard IEEE 802.11
 - Protocolli di Accesso al Mezzo
 - Protocolli di Routing
- Reti di sensori (8 ore, Chessa)
 - Tecnologie
 - Paradigmi
 - Routing
 - Tabelle Hash geografiche

- Standard per reti di sensori (4 ore, S. Chessa)
 - IEEE 802.15.4
 - Zigbee
- TinyOs, NesC, Z Stack (2 ore, S. Chessa)
- Gestione dell'energia (6 ore, P. Santi)
 - Modelli
 - Clustering
 - Topology Control
- Gestione dei dati in reti di sensori (4 ore, G. Amato)
 - Modelli
 - Query Processing
 - Stato dell'arte
- Smart Environments (2 ore, F. Furfari)
- Sicurezza e generazione di chiavi (2 ore, G. Oligeri

- Orario di ricevimento (Chessa)
 - Lunedì 9-12
- Materiale didattico:
 - Lucidi delle lezioni
 - Articoli scaricabili dal sito web del corso
- Testi di consultazione
 - Wireless Sensor Networks an information processing approach, F. Zhao e L. Guibas, Morgan Kauffman & Elsevier, 2004
 - Ad Hoc Networking, C. Perkins
 - Ad Hoc Mobile Wireless Networks: Protocols and Systems, C.K.Toh
 - Topology Control in Wireless Ad Hoc and Sensor Networks, P. Santi, Wiley, 2005
- Sito Web
 - http://www.cli.di.unipi.it/doku/doku.php/rhs/start

Orario delle lezioni

- Martedì 9-11, aula C1
- Giovedì 14-16, aula C1

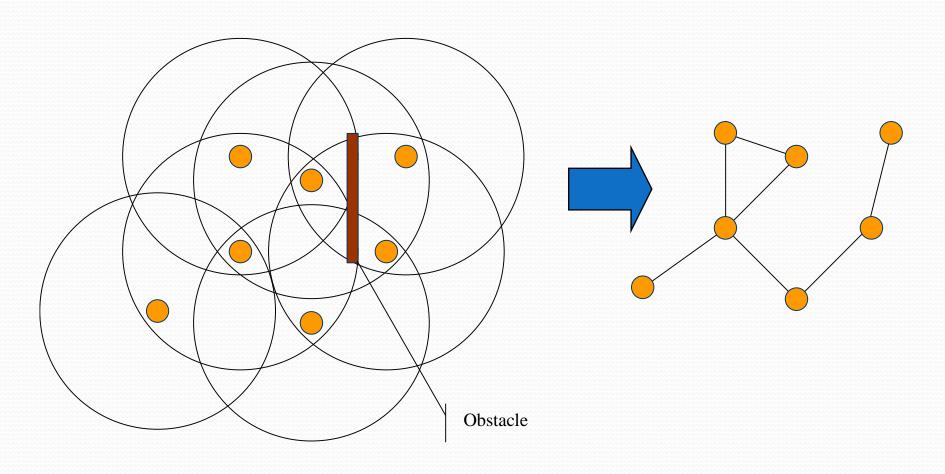
Modalità di Esame

- Seminario da tenere a fine corso
- In alternativa un esame orale

Mobile Ad Hoc Networks (MANETs)

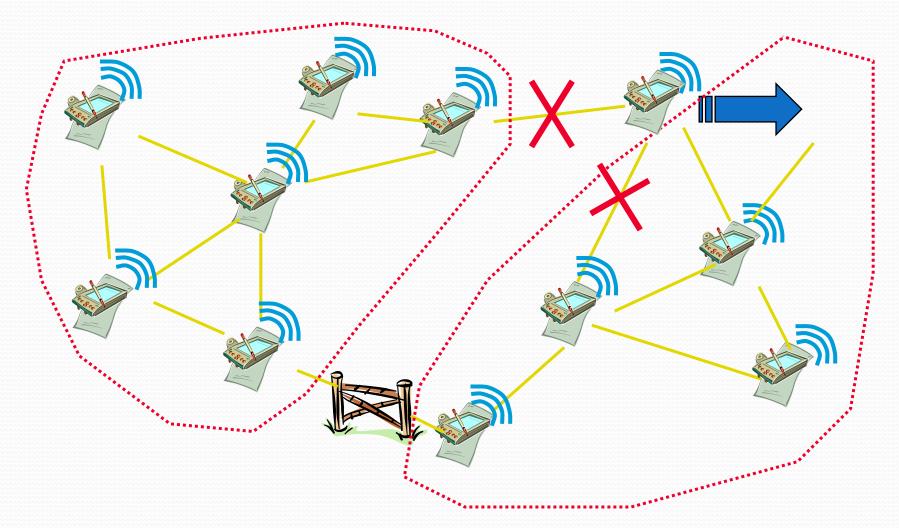
- Autonomous system of mobile hosts connected by wireless links
 - The nodes are autonomous and independent
 - Battery powered
 - Mobile
 - Nodes communicate by exchanging packets via radio waves
 - Cooperate in a peer-to-peer fashion
 - No fixed network infrastructure
 - Pure distributed system
 - No centralized coordinators
 - The network can be (re-)configured on-the-fly

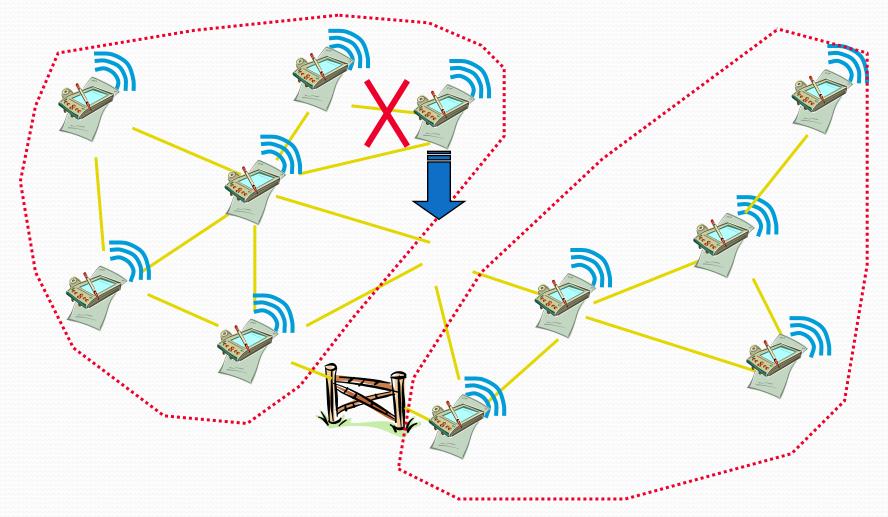
- Features
 - Rapidly deployable
 - Easily configurable
 - Robust
 - Heterogeneous

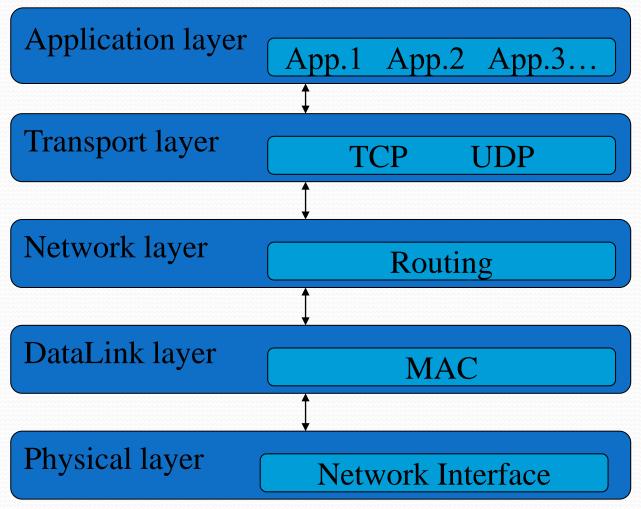

- Potential drawbacks
 - Distributed control
 - Neighbor knowledge
 - node should detect the presence of other nodes (and behave accordingly)
 - Mobility is a challenge
 - Frequent link/node failures
 - Management of network heterogeneity
 - Different capabilities/power:
 - Battery, processing, storage capacity
 - Laptops, handheld, sensors, etc.

- Applications:
 - communication in remote or hostile environments
 - management of emergencies
 - disaster recovery
 - ad hoc commercial installations
 - sensor networks

- Wireless communications:
 - Transmission range of the nodes is limited
 - Obstacles may prevent direct communication between a pair of nodes




- Point-to-point Network
 - Communication between non-adjacent nodes must be supported by other nodes

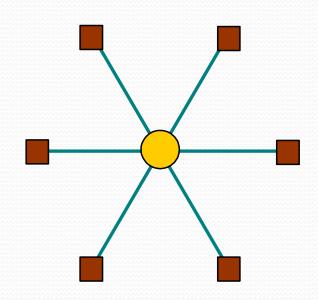

Communication issues:

- Access to the shared wireless channel
 - requires a (wireless) Media Access Control (MAC)
- Mobility / Failures of mobiles (limited power supply)
 - makes the network topology change arbitrarily
 - Produce nodes disconnections/network partitioning
- Limited transmission range:
 - The network is multi hop
 - Need for a multihop routing protocol
- Wireless communication:
 - Eavesdropping of ongoing communications
 - Security issues

Typical protocol stack

Medium Access Control Issues

- Due to physical layer properties
 - No definite boundaries for radio waves
 - High Bit Error Rate (BER)
 - Asymmetric channel qualities
- Concept of "neighbors:" nodes within each other transmission range: only neighbors detect the carrier on the channel
- Attenuation of signal strength depending on node distance

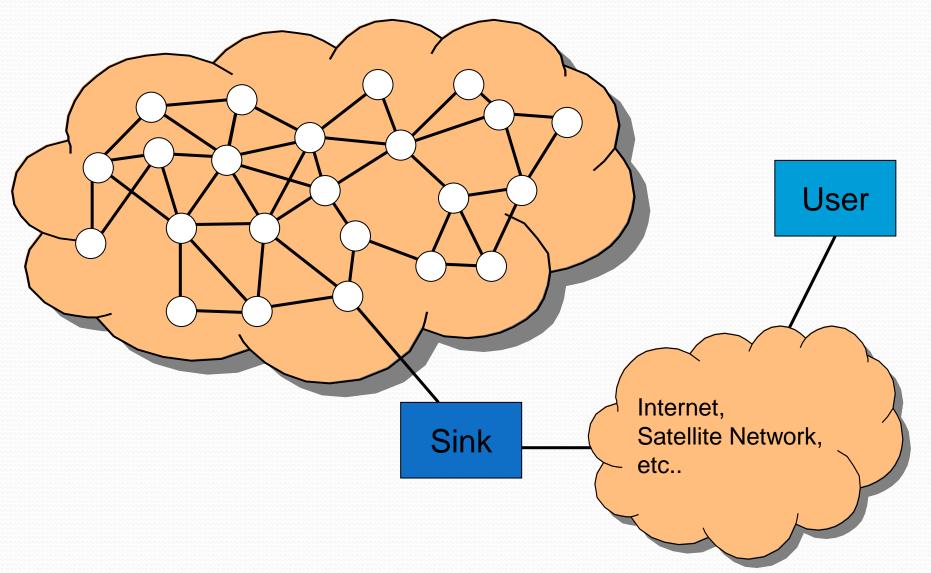

Network Issues

- Nodes are also routers:
 - Need for a multihop routing protocol
- Nodes are mobile, the network topology changes frequently
 - Routes may fail frequently
 - Need for fast route update
 - Need for dynamic routing
- Energy may be important in some applications

(WSN)

Environmental monitoring with sensors

- Conventional approach:
 - The sensors are just transducers
 - Connected by a cable to a centralized control device
- Examples
 - Sensors in automotive
 - Sensors in industrial plants
 - House alarms



- Differences with the conventional model:
 - The sensors are "intelligent"
 - Microsystems (processor, memory, transducers,...)
 - Can process sensed data
 - The sensors communicate via wireless technologies
 - Radio
 - Optical
 - The sensors build a network
 - Not just direct communication transducer-centralized control
 - Network easily deployable
 - No need for fixed infrastructure

- A typical configuration comprises:
 - One (or more) sink nodes
 - Interface the WSN with the external world
 - A set of wireless sensors
- Each sensor :
 - Low power, low cost system
 - Small
 - Autonomous
- Sensors equipped with:
 - Processor
 - Memory
 - Radio Transceiver
 - Sensing devices
 - Acceleration, pressure, humidity, light, acoustic, temperature, GPS, magnetic, ...
 - Battery, solar cells, ...

- Sensors are deployed in the Sensing Field
- Each sensors samples environmental parameters
 - Produces streams of data
 - data streams can be pre-processed locally and then forwarded to a sink
- The sinks might be temporarily unavailable
 - The network operates autonomously
 - Pre-process and store sensed data
 - Sensors may implement a database

Advantages of WSN

- Sensor network deployment is easy and cheap
 - No need for cables
 - The network is self-configurable
 - The number of sensors can scale
 - The sensors can be redundant (fault-tolerance)
- The sensors can be mobile
 - For instance sensors on a person or an animal
- No need for centralized control
- The sensors can filter/process data
 - The network can be programmed dynamically

Differences with Ad Hoc Networks

- Number of sensor nodes can be several orders of magnitude higher
- Sensor nodes are strongly constrained in power, computational capacities, and memory
- Sensor network are denser and sensors are prone to failures
- The topology of a sensor network changes mainly due node failures (and mobility?)
- Sensors may not have individual IDs
- Need for a tight integration with sensing tasks

Relationship of WSN with other technologies

WSN Applications

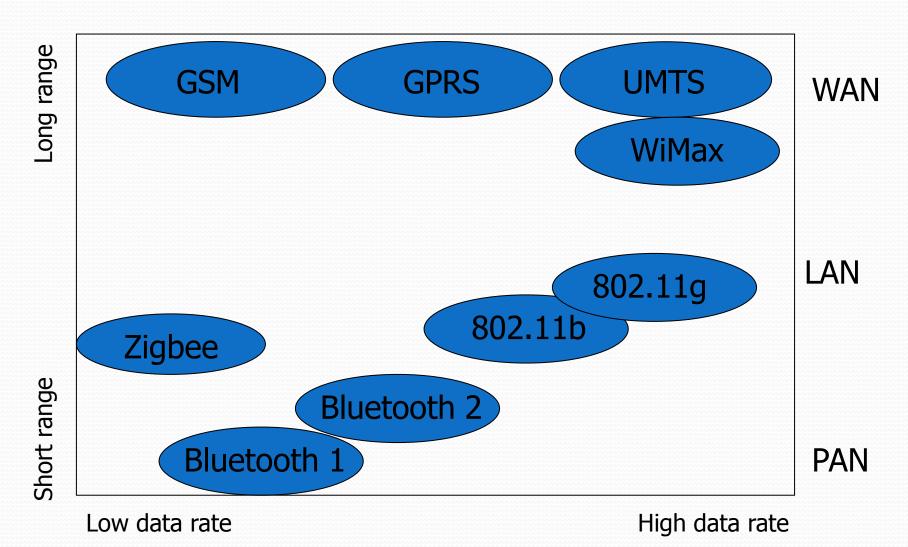
- Environmental
 - Tracking animals, ...
 - Pollution control, ...
- Disaster recovery
 - Monitor disaster areas,
 - Fire/flooding detection, ...
 - Meteorological research
- Security
 - Nuclear, Biological and Chemical (NBC) attack detection
 - Monitoring battlefield,
 - Surveillance, ...

- Health
 - Diagnostics
 - Monitoring
 - Support to disabled
- Commercial
 - Inventory management
 - Vehicle tracking
 - Toys
 - Domotics
- Art
- Space exploration
- ...

WSN, barcode and RFIDs

- Bar codes:
 - Extremely cheap (the complexity is in the reader)
 - Deep user involvement
 - Short range (a few centimeters)
- RFID (Radio Frequency Identifiers):
 - Cheap technology (the complexity is in the reader)
 - User involvement
 - Short range (a few meters)
 - RFID tags give their identifier to the reader
 - Passive tags (powered by the reader)
 - Can provide TAG ID and a few sampled data to the reader
 - Active tags (battery powered)
 - No network, just TAG and reader
- Wireless sensor networks
 - No need for user involvement
 - Medium range (10-100 meters)
 - Range can be extended with multihop communications
 - Active sensors (battery powered)
 - Can interoperate with RFID tags

An example: user localization


- Localization:
 - Locate a person or a device in an environment
- With barcode:
 - A code denotes an area
 - The user (equipped with a barcode reader) reads the code
 - The reader determines the position of the user
 - Used in some pilot project in museums etc..
- With RFID
 - A RFID reader denotes an area
 - The user brings an RFID tag
 - As the user approaches the area the reader detects the user's tag
- With a WSN
 - A WSN is deployed in a building
 - A user brings a sensor
 - The WSN detects the presence and position of the user's sensor in the building

Wireless Standards

Main standards for ad hoc & sensor networking

- IEEE 802.11 (Wi-Fi)
 - General purpose wireless access
- IEEE 802.15.1 & Bluetooth
 - Cable replacement
- IEEE 802.15.4 & ZigBee
 - Sensor and actuator networks
- IEEE 802.16 (WiMax)
 - Metropolitan wireless access networks

Wireless technologies

IEEE 802.11 standard & extensions

- A family of standards:
 - IEEE 802.11
 - Frequency: 2.4 Ghz
 - Bit rate: 1, 2 Mbps
 - Transmission range: ~ 100 meters (2Mbps)-130 meters (1Mbps)
 - IEEE 802.11a
 - Frequency: 5 Ghz
 - Bit rate: up to 54 Mbps
 - Transmission range: ~ 10 meters (54 Mbps)
 - IEEE 802.11b (Wi-Fi)
 - Frequency: 2.4 Ghz
 - Bit rate: up to 11 Mbps
 - Transmission range: ~ 30 meters

IEEE 802.11 standard & extensions

- IEEE 802.11g
 - Frequency: 2.4 GHz
 - Bit rate: up to 54 Mbps
- IEEE 802.11h
 - Extension of 802.11a to lower interferences with satellites and radar systems
- IEEE 802.11e
 - QoS support
 - Priority management
- IEEE 802.11n
 - Directional antennas (antenna arrays)
- IEEE 802.11f
 - Protocol to allow roaming of mobile hosts between different access points

IEEE 802.15.4 and Zigbee

- The IEEE 802.15.4 defines both physical and MAC layers
- Zigbee is an industry consortium promoting the IEEE 802.15.4
 - Defines also higher network layers and application interfaces
- Designed for low power sensor network
 - Low throughput (up to 115 Kbps)
 - Low duty cycle (around 1 percent)
- Defines either a star or a peer to peer network

IEEE 802.15.4 and Zigbee vs Bluetooth

- There is no real competition
- Bluetooth:
 - Higher data rate
 - Thought for personal and multimedia communication
 - Audio
 - Video (low quality)
 - Bluetooth 2 increases the throughput up to 10 Mbps
 - Small networks
 - Up to 8 active nodes
 - Can be extended with piconets)
 - Star topology
 - Basically master-slave communications

IEEE 802.15.4 and Zigbee vs Bluetooth

- ZigBee:
 - Low data rate
 - Thought for communication and control of sensors and actuators
 - Can manage large networks
 - Up to thousands of nodes
 - Manages nodes' mobility
 - Different network topologies (tree and mesh)
 - Communications
 - Master-slave
 - Peer to peer

IEEE 802.15.4, Bluetooth, WiFi

Name	ZigBee	WiFi	Bluetooth
Standard	802.15.4	802.11 a,b,g	802.15.1
Application	Monitoring and control	Web, e-mail, video	Cable replacement
System resources	50 to 60 Kbytes	>1 Mbytes	>250 Kbytes
Battery life (days)	100 to > 1000	1 to 5	1 to 7
Network size	65.536	32	7
Bandwidth (Kbps)	20 to 250	11K to 50k	720
Maximum transmission range	100+	100	10
Success metrics	Reliability, power, cost	Speed, flexibility	Cost, convenience

ZigBee

- ZigBee is distributed by hardware vendors
 - The vendors provide development kits with binary code
 - The source code is generally not distributed
 - The distribution is often free
- ZigBee is a complex protocol stack
 - Low-end sensors may not support it
 - It is the result of several compromises
 - Almost "general purpose"
 - Takes into account the requirements of several different industrial companies
 - In some applications it may result too heavy

ZigBee

- Thought for
 - Applications where dynamic network management is important
 - Interoperability among products of different vendors
- Service oriented architecture
- Expected applicative areas:
 - Personal networks
 - Individuals monitoring (elders, patients, disabled)
 - Home networks
 - House monitoring
 - Support to elders, disabled
 - Support to context-aware systems for multimedia systems
 - ...

ZigBee alternatives

- Some HW vendors also offer lighter protocol stacks
 - For example the SimpliciTi stack of Texas Instruments
- There is an effort of standardization of an IPV6 stack for WSN
 - Stack 6LowPan
 - The main difficulty is in the compression of IPV6 headers
 - Still in a preliminary phase
- Some vendors develop directly in C or even in assembler
- In the academy there are several alternatives
 - TinyOS
 - SOS
 - Contiki
 - ...