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What is quantification?

1

1Dodds, Peter et al. Temporal Patterns of Happiness and Information in a Global Social
Network: Hedonometrics and Twitter. PLoS ONE, 6(12), 2011.
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What is quantification? (cont’d)
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What is quantification? (cont’d)

• In many applications of classification, the real goal is determining the relative
frequency (or: prevalence) of each class in the unlabelled data
(quantification, a.k.a. supervised prevalence estimation)

• E.g.

• Among the tweets about the next presidential elections, what is the fraction of
pro-Democrat ones?

• Among the posts about the Apple Watch 3 posted on forums, what is the
fraction of “very negative” ones?

• How have these percentages evolved over time?

• Quantification has been studied within IR, ML, DM, NLP, and has given rise
to learning methods and evaluation measures specific to it

• We will mostly deal with text quantification
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Introduction

What is quantification? (cont’d)

• Quantification may be also defined as the task of approximating a true
distribution by a predicted distribution
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• As a result, evaluation measures for quantification are divergences, which
evaluate how much a predicted distribution diverges from the true distribution
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Introduction

Distribution drift

• The need to perform quantification arises because of distribution drift, i.e.,
the presence of a discrepancy between the class distribution of Tr and that of
Te.
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Introduction

Distribution drift (cont’d)

• Distribution drift may derive when

• the environment is not stationary across time and/or space and/or other
variables, and the testing conditions are irreproducible at training time

• the process of labelling training data is class-dependent (e.g., “stratified”
training sets)

• the labelling process introduces bias in the training set (e.g., if active learning
is used)

• Distribution drift clashes with the IID assumption, on which standard ML
algorithms are instead based.
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Introduction

The “paradox of quantification”

• Is “classify and count” the optimal quantification strategy?

No!

• A perfect classifier is also a perfect “quantifier” (i.e., estimator of class
prevalence), but ...

• ... a good classifier is not necessarily a good quantifier (and vice versa) :

FP FN

Classifier A 18 20
Classifier B 20 20

• Paradoxically, we should prefer quantifier B to quantifier A, since A is biased

• This means that quantification should be studied as a task in its own right
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Introduction

Vapnik’s Principle

• Key observation: classification is a more general problem than quantification

• Vapnik’s principle:

“If you possess a restricted amount of information for solving some prob-
lem, try to solve the problem directly and never solve a more general
problem as an intermediate step. It is possible that the available informa-
tion is sufficient for a direct solution but is insufficient for solving a more
general intermediate problem.”

• This suggests solving quantification directly (without solving classification as
an intermediate step) with the goal of achieving higher quantification
accuracy than if we opted for the indirect solution
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Applications of Quantification in IR, ML, DM, NLP

Applications of quantification

A number of fields where classification is used are not interested in individual
data, but in data aggregated across spatio-temporal contexts and according to
other variables (e.g., gender, age group, religion, job type, ...); e.g.,

• Social sciences : studying indicators concerning society and the relationships
among individuals within it 2

[Others] may be interested in finding the needle in the haystack, but social
scientists are more commonly interested in characterizing the haystack.

(Hopkins and King, 2010)

“Computational social science” is the big new paradigm spurred by the
availability of “big data” from social networks

• Political science : e.g., predicting election results by estimating the
prevalence of blog posts (or tweets) supporting a given candidate or party

2D. Hopkins and G. King, A Method of Automated Nonparametric Content Analysis for
Social Science. American Journal of Political Science 54(1), 2010.
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Applications of Quantification in IR, ML, DM, NLP

Applications of quantification (cont’d)

• Epidemiology : tracking the incidence and the spread of diseases; e.g.,

• estimate pathology prevalence from clinical reports where pathologies are
diagnosed

• estimate the prevalence of different causes of death from “verbal autopsies”,
i.e., from verbal accounts of symptoms

• Market Research : estimating the distribution of consumers’ attitudes about
products, product features, or marketing strategies; e.g.,

• quantifying customers’ attitudes from verbal responses to open-ended
questions3

3Esuli, A. and F. Sebastiani: 2010, Machines that Learn how to Code Open-Ended Survey
Data. International Journal of Market Research 52(6), 775–800.
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Applications of Quantification in IR, ML, DM, NLP

Applications of quantification (cont’d)

• Natural Language Processing : e.g., tuning a word sense disambiguator to a
domain characterized by sense priors different from those of the training set

• Machine Learning : e.g., estimating the class prevalence of the test set in
order to improve the performance of classifiers trained on data with different
class prevalence

• Others : e.g.,

• estimating the proportion of no-shows within a set of bookings
• estimating the proportions of different types of cells in blood samples
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Applications of Quantification in IR, ML, DM, NLP

Dimensions of quantification

• Text quantification, like text classification, may be performed across various
dimensions (i.e., criteria):

• by topic : applications to the social sciences, epidemiology, market research,
resource allocation, word sense disambiguation

• by sentiment (“sentiment classification”): applications to the social sciences,
political sciences, market research, ...

• by language (“language identification”): e.g., estimating language diversity

• Applications of quantification found in the literature may be distinguished
into

• those that apply methods especially designed for quantification
• those that, unaware of the existence of specific methods for quantification,

apply standard classification methods with “classify and count”
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Evaluation Measures for Quantification

Notation and terminology

• Domain X of items (documents), set C of classes

• Different brands of classification :

• Binary classification: each item has exactly one of C = {c1, c2}
• Single-label multi-class classification (SLMC): each item has exactly one of
C = {c1, ..., cn}, with n > 2

• Multi-label multi-class classification(MLMC) : each item may have zero, one,
or several among C = {c1, ..., cn}, with n > 1

• MLMC is usually reduced to binary by solving n independent binary
classification problems

• Ordinal classification (aka “ordinal regression”): each item has exactly one of
C = (c1 � ... � cn), where � is a total order and n > 2

• (Metric regression): each item has a real-valued score from the range [α, β]

• For each such brand of classification we will be interested in its
“quantification equivalent” (Q-equivalent), i.e., in solving and evaluating that
classification task at the aggregate level.
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Evaluation Measures for Quantification

Notation and terminology (cont’d)

x vectorial representation of item x
C = {c1, ..., cn} set of classes

pS(cj) true prevalence (aka “prior probability”) of cj in set S
p̂S(cj) estimated prevalence of cj in set S
p̂MS (cj) estimate p̂S(cj) obtained via method M

p(cj |x) posterior probability of cj returned by the classifier
p(δj) probability that classifier attributes cj to a random item
pS(δj) fraction of items in S labelled as cj by the classifier

19 / 43



Evaluation Measures for Quantification

How do we evaluate quantification methods?

• Evaluating quantification means measuring how well a predicted probabilistic
distribution p̂(c) fits a true distribution p(c)

• The goodness of fit between two distributions can be computed via
divergence functions, which enjoy

1 D(p, p̂) = 0 only if p = p̂ (identity of indiscernibles)

2 D(p, p̂) ≥ 0 (non-negativity)

and may enjoy (as exemplified in the binary case)

3 If p̂′(c1) = p(c1)− a and p̂′′(c1) = p(c1) + a, then D(p, p̂′) = D(p, p̂′′)
(impartiality)

4 If p̂′(c1) = p′(c1)± a and p̂′′(c1) = p′′(c1)± a, with p′(c1) < p′′(c1) ≤ 0.5,
then D(p, p̂′) > D(p, p̂′′) (relativity)
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Evaluation Measures for Quantification

How do we evaluate quantification methods? (cont’d)

Divergences frequently used for evaluating (multiclass) quantification are

• MAE(p, p̂) =
1

|C|
∑
c∈C
|p̂(c)− p(c)| (Mean Absolute Error)

• MRAE(p, p̂) =
1

|C|
∑
c∈C

|p̂(c)− p(c)|
p(c)

(Mean Relative Absolute Error)

• KLD(p, p̂) =
∑
c∈C

p(c) log
p(c)

p̂(c)
(Kullback-Leibler Divergence)

Impartiality Relativity
Mean Absolute Error Yes No

Mean Relative Absolute Error Yes Yes
Kullback-Leibler Divergence No Yes
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Evaluation Measures for Quantification

How do we evaluate quantification methods? (cont’d)

• MRAE and KLD may sometimes be undefined due to the presence of zero
denominators.

• To solve this we can smooth p(c) and p̂(c) via additive smoothing; the
smoothed version of p(c) is

ps(c) =
ε+ p(c)

ε|C|+
∑
c∈C

p(c)
(1)

• ε =
1

2|Te|
is often used as a smoothing factor
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Evaluation Measures for Quantification

Multi-objective measures

• The “paradox of quantification”:

1 Classifier A : CT1 = (TP = 0,FP = 1000,FN = 1000,TN = 0)
2 Classifier B : CT2 = (TP = 990,FP = 0,FN = 10,TN = 1000)

A yields better KLD than B!, but we intuitively prefer A to B
• It is difficult to trust a quantifier if it is not also a good enough classifier ...
• The multi-objective measure4 MOM strives to keep both classification and

quantification error low

MOM(p, p̂) =
∑
cj∈C
|FP2

j − FN2
j |

=
∑
cj∈C

(FNj + FPj) · |FNj − FPj |

since
• |FNj − FPj | is a measure of quantification error
• (FNj + FPj) is a measure of classification error

4Milli, L., A. Monreale, G. Rossetti, F. Giannotti, D. Pedreschi, F. Sebastiani, Quantification
Trees. In: ICDM 2013, pp. 528–536.
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Supervised Learning Methods for Prevalence Estimation

Quantification methods

• Quantification methods belong to two classes

• 1. Aggregative : they require the classification of individual items as a basic
step

• 2. Non-aggregative : quantification is performed without performing
classification

• Aggregative methods may be further subdivided into

• 1a. Methods using general-purpose learners (i.e., originally devised for
classification); can use any supervised learning algorithm that returns posterior
probabilities

• 1b. Methods using special-purpose learners (i.e., especially devised for
quantification)
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Supervised Learning Methods for Prevalence Estimation

Quantification methods: CC

• Classify and Count (CC) consists of

1 generating a classifier from Tr
2 classifying the items in Te
3 estimating pTe(cj) by counting the items predicted to be in cj , i.e.,

p̂CCTe (cj) = pTe(δj)

• But a good classifier is not necessarily a good quantifier ...

• CC suffers from the problem that “standard” classifiers are usually tuned to
minimize (FP + FN) or a proxy of it, but not |FP − FN|
• E.g., in recent experiments of ours, out of 5148 binary test sets averaging

15,000+ items each, standard (linear) SVM brought about an average FP/FN
ratio of 0.109.
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Supervised Learning Methods for Prevalence Estimation

Quantification methods: PCC

• Probabilistic Classify and Count (PCC) estimates pTe by simply counting the
expected fraction of items predicted to be in the class, i.e.,

p̂PCCTe (cj) = ETe [cj ] =
1

|Te|
∑
x∈Te

p(cj |x)

• The rationale is that posterior probabilities contain richer information than
binary decisions, which are obtained from posterior probabilities by
thresholding.

• Shown to perform very well in (Gao and Sebastiani, 2016)5.

5W. Gao and F. Sebastiani. From Classification to Quantification in Tweet Sentiment
Analysis. Social Network Analysis and Mining, 6(19), 1–22, 2016.
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Supervised Learning Methods for Prevalence Estimation

Quantification methods: ACC

• Adjusted Classify and Count (ACC) is based on the observation that, after we
have classified the test documents in Te, for all cj ∈ C it holds that

pTe(δj) =
∑
ci∈C

pTe(δj |ci ) · pTe(ci )

• The pTe(δj)’s are observed

• The pTe(δj |ci )’s can be estimated on Tr via k-fold cross-validation (these
latter represent the system’s bias).

• This results in a system of |C| linear equations (one for each cj) with |C|
unknowns (the pTe(ci )’s).

• ACC consists of solving this system, i.e., of correcting the class prevalence
estimates pTe(δj) obtained by CC according to the estimated system’s bias.
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Supervised Learning Methods for Prevalence Estimation

Quantification methods: EMQ

• Accurate quantification may improve classification accuracy since, in the
presence of distribution drift, classification accuracy may suffer

• E.g., in a Näıve Bayesian classifier

p(c |x) =
p(x|c)p(c)

p(x)

posterior probabilities have been “calibrated” for Tr

• Probabilities are calibrated for a set S when

pS(c) = ES [c] =
1

|S |
∑
x∈S

p(c |x)

which means that in the presence of distribution drift they cannot be
calibrated for both Tr and Te
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Supervised Learning Methods for Prevalence Estimation

Quantification methods: EMQ (cont’d)

• By estimating class prevalence in Te we can adjust the classifier itself so as to
yield better classification accuracy

• EMQ : an iterative, EM-based “quantification” method for improving
classification accuracy6

• EMQ consists of an iterative recalibration of the posterior probabilities p(c |x)
for the test set Te, until convergence

• The class prevalences pTe(c) are the “byproducts” of this process

6Saerens, M., P. Latinne, and C. Decaestecker: 2002, Adjusting the Outputs of a Classifier to
New a Priori Probabilities: A Simple Procedure. Neural Computation 14(1), 21–41.
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Supervised Learning Methods for Prevalence Estimation

Quantification methods: EMQ (cont’d)

• We apply EM in the following way until convergence of the p̂(s)(c):

• Step 0: For each c ∈ C initialize p̂(0)(c)← pTr (c)
For each x ∈ Te initialize p(0)(c|x)← p(c|x)

• Step s: Iterate:

• Step s(E): For each c compute:

p̂(s+1)(c) =
1

|Te|
∑
x∈Te

p(s)(c|x) (2)

• Step s(M): For each test item x and each c compute:

p(s+1)(c|x) =

p̂(s+1)(c)

p(s)(c)
· p(s)(c|x)

∑
c∈C

p̂(s+1)(c)

p(s)(c)
· p(s)(c|x)

(3)

• Step s(E) re-estimates the priors in terms of the new posterior probabilities

• Step s(M) re-calibrates the posterior probabilities by using the new priors
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Supervised Learning Methods for Prevalence Estimation

Quantification methods: SVM(KLD)

• Most researchers using aggregative methods have used general-purpose
learning algorithms optimized for classification;

• Alternative idea: use special-purpose learning algorithms optimized directly
for quantification7

• SVM(KLD): use explicit loss minimization, i.e., use a learner which directly
optimizes the evaluation measure (“loss”) used for quantification

7A. Esuli and F. Sebastiani. Optimizing Text Quantifiers for Multivariate Loss Functions.
ACM Transactions on Knowledge Discovery and Data, 9(4), Article 27, 2015.
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Supervised Learning Methods for Prevalence Estimation

Quantification methods: SVM(KLD) (cont’d)

• Problem:

• The loss functions most learners (e.g., AdaBoost, SVMs) can be optimized for
must be linear (i.e., the error on the test set is a linear combination of the
error generated by each test example) / univariate (i.e., each test item can be
taken into consideration in isolation)

• Loss functions for quantification are nonlinear (the impact of the error on a
test item depends on how the other test items have been classified) /
multivariate (they must take in consideration all test items at once)

• SVMperf , a structured output learning algorithm that can be optimized for
arbitrary nonlinear / multivariate measures

• SVM(KLD) tailors SVMperf to use KLD as a loss
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Supervised Learning Methods for Prevalence Estimation

Quantification methods: SVM(KLD) (cont’d)

• Quantification accuracy is often analysed by class prevalence ...

Table: Accuracy as measured in terms of KLD on the 5148 test sets of RCV1-v2
grouped by class prevalence in Tr

RCV1-v2 VLP LP HP VHP All
SVM(KLD) 2.09E-03 4.92E-04 7.19E-04 1.12E-03 1.32E-03

PACC 2.16E-03 1.70E-03 4.24E-04 2.75E-04 1.74E-03
ACC 2.17E-03 1.98E-03 5.08E-04 6.79E-04 1.87E-03
MAX 2.16E-03 2.48E-03 6.70E-04 9.03E-05 2.03E-03
CC 2.55E-03 3.39E-03 1.29E-03 1.61E-03 2.71E-03
X 3.48E-03 8.45E-03 1.32E-03 2.43E-04 4.96E-03

PCC 1.04E-02 6.49E-03 3.87E-03 1.51E-03 7.86E-03
MM(PP) 1.76E-02 9.74E-03 2.73E-03 1.33E-03 1.24E-02

MS 1.98E-02 7.33E-03 3.70E-03 2.38E-03 1.27E-02
T50 1.35E-02 1.74E-02 7.20E-03 3.17E-03 1.38E-02

MM(KS) 2.00E-02 1.14E-02 9.56E-04 3.62E-04 1.40E-02

34 / 43



Supervised Learning Methods for Prevalence Estimation

Quantification methods: SVM(KLD) (cont’d)

• ... or by amount of drift ...

Table: Accuracy as measured in terms of KLD on the 5148 test sets of RCV1-v2
grouped into quartiles homogeneous by distribution drift

RCV1-v2 VLD LD HD VHD All
SVM(KLD) 1.17E-03 1.10E-03 1.38E-03 1.67E-03 1.32E-03

PACC 1.92E-03 2.11E-03 1.74E-03 1.20E-03 1.74E-03
ACC 1.70E-03 1.74E-03 1.93E-03 2.14E-03 1.87E-03
MAX 2.20E-03 2.15E-03 2.25E-03 1.52E-03 2.03E-03
CC 2.43E-03 2.44E-03 2.79E-03 3.18E-03 2.71E-03
X 3.89E-03 4.18E-03 4.31E-03 7.46E-03 4.96E-03

PCC 8.92E-03 8.64E-03 7.75E-03 6.24E-03 7.86E-03
MM(PP) 1.26E-02 1.41E-02 1.32E-02 1.00E-02 1.24E-02

MS 1.37E-02 1.67E-02 1.20E-02 8.68E-03 1.27E-02
T50 1.17E-02 1.38E-02 1.49E-02 1.50E-02 1.38E-02

MM(KS) 1.41E-02 1.58E-02 1.53E-02 1.10E-02 1.40E-02
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Supervised Learning Methods for Prevalence Estimation

Quantification methods: SVM(KLD) (cont’d)

• ... or along the temporal dimension ...
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Resources and Shared Tasks

Software resources for quantification

• A. Esuli and F. Sebastiani. Optimizing Text Quantifiers for Multivariate Loss
Functions. ACM Transactions on Knowledge Discovery from Data, 9(4):
Article 27, 2015. Contains links to quantification software & datasets.

• W. Gao and F. Sebastiani. From Classification to Quantification in Tweet
Sentiment Analysis. Social Network Analysis and Mining, 6(19), 1–22, 2016.
Contains links to quantification software & datasets.

• Hopkins, D.J. and G. King: 2010, A Method of Automated Nonparametric
Content Analysis for Social Science. American Journal of Political Science
54(1), 229–247. Contains links to quantification software.
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Resources and Shared Tasks

Shared tasks

• SemEval 2016 Task 4: “Sentiment Analysis in Twitter”
(http://alt.qcri.org/semeval2016/task4/)

• Subtask D: Tweet quantification according to a two-point scale:

• Given a set of tweets about a given topic, estimate the distribution of the
tweets across the “Positive” and “Negative” labels.

• Evaluation measure is KLD

• Subtask E: Tweet quantification according to a five-point scale:

• Given a set of tweets about a given topic, estimate the distribution of the
tweets across the five classes of a five-point scale.

• Evaluation measure is Earth Mover’s Distance

• Run again in 2017
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Conclusions

Conclusion

• Quantification: a relatively (yet) unexplored new task, with many research
problems still open

• Growing awareness that quantification is going to be more and more
important; given the advent of big data, application contexts will spring up in
which we will simply be happy with analysing data at the aggregate (rather
than at the individual) level
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Conclusions

Questions?
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Conclusions

Thank you!

For any question, email me at
fabrizio.sebastiani@isti.cnr.it
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