
Language Models

Andrea Esuli

Statistical Language Model
A statistical language model is a probability distribution P over sequences of
terms.

Given a document d that is composed of a sequence of words w1w2w3, we can
define:

P(d) = P(w1w2w3) = P(w1)P(w2|w1)P(w3|w1w2)

Depending on the assumptions we make on the probability distribution, we
can create statistical model of different complexity.

The formula above makes no assumptions and can exactly model any
language, yet it is impractical because it requires to learn the probability of
any sequence in the language.

Unigram model
A unigram model assumes a statistical independence between words, i.e., the
probability of d is the product of the probabilities of its words:

P(d) = P(w1w2w3) = P(w1)P(w2|w1)P(w3|w1w2)

= P(w1)P(w2)P(w3) = 𝛱i P(wi)

The bayesian classifier that uses this model is called naïve for this reason.
Usually the models use the logs of the probabilities to work in a linear space:

log(𝛱i P(wi)) = 𝛴i log(P(wi))

Smoothing, e.g., add one to all frequencies, is used to avoid zero probabilities.

Bigram model
A bigram model assumes a statistical dependence of a word from the preceding
one:

P(d) = P(w1w2w3) = P(w1)P(w2|w1)P(w3|w1w2)

= P(w1)P(w2|w1)P(w3|w2) = 𝛱i P(wi|wi-1)

This simple addition is already able to capture a good amount of language
regularities.

In general, the longer the n-gram we adopt for the model:

● the more semantic is captured;
● the less statistical significant is the model (memorization/generalization).

Vector Space Model
The Vector Space Model (VSM) is a
typical machine-processable
representation adopted for text.

Each vector positions a document
into an n-dimensional space, on
which learning algorithms operate
to build their models

v(d
1
) = [w

1
,w

2
… …, w

n-1
, w

n
]

Vector Space Model
After text processing, tokenization… a document is usually represented as
vector in R|F|, where F is the set of all the distinct features observed in
documents.

Each feature is mapped to a distinct dimension in R|F| using a one-hot vector:

v('played') = [1, 0, 0, … , 0, 0, … , 0, 0, 0]

v('game') = [0, 1, 0, … , 0, 0, … , 0, 0, 0]

v('match') = [0, 0, 1, … , 0, 0, … , 0, 0, 0]

⁞
v('trumpet') = [0, 0, 0, … , 0, 1, … , 0, 0, 0]

⁞
v('bwoah') = [0, 0, 0, … , 0, 0, … , 0, 0, 1]

Vector Space Model
A document is represented as the weighted sum of its features vectors:

For example:

 d = 'you played a good game'

 v(d) = [0,w
played,d

,w
game,d

, 0,… …0, w
good,d

, 0… …0, 0]

The resulting document vectors are sparse:

Sparse representations
d1 = 'you played a game'

 d2 = 'you played a match'

 d3 = 'you played a trumpet'

v(d1) = [0, w
played,d1

 , w
game,d1

 , 0 , 0, … , 0, 0 , 0]

v(d2) = [0, w
played,d2

 , 0 , w
match,d2

 , 0, … , 0, 0 , 0]

v(d3) = [0, w
played,d3

 , 0 , 0 , 0, … , 0, w
trumpet,d3

 , 0]

Semantic similarity between features (game~match) is not captured:

sim(v(d1), v(d2)) ~ sim(v(d1), v(d3)) ~ sim(v(d2), v(d3))

Modeling word similarity
How do we model that game and match are related terms and trumpet is not?

Using linguistic resources: it requires a lot of human work to build them.

Observation: co-occurring words are semantically related.

Pisa is a province of Tuscany
Red is a color of the rainbow
Wheels are a component of the bicycle
*Red is a province of the bicycle

We can exploit this propriety of language, e.g., following the distributional
hypothesis.

Distributional hypothesis
“You shall know a word by the company it keeps!” Firth (1957)

Distributional hypothesis: the meaning of a word is determined by the
contexts in which it is used.

Yesterday we had bwoah at the restaurant.
I remember my mother cooking me bwoah for lunch.

I don't like bwoah, it's too sweet for my taste.
I like to dunk a piece bwoah in my morning coffee.

http://annabellelukin.edublogs.org/files/2013/08/Firth-JR-1962-A-Synopsis-of-Linguistic-Theory-wfihi5.pdf

Word-Context matrix
A word-context (or word-word) matrix is a |F|·|F| matrix X that counts the
frequencies of co-occurrence of words in a collection of contexts (i.e, text
spans of a given length).

You cook the cake twenty minutes in the oven at 220 C.
I eat my steak rare.

I'll throw the steak if you cook it too much.
The engine broke due to stress.

I broke a tire hitting a curb, I changed the tire.

Context-2,+2('cake') = {['cook','the','twenty', 'minutes']}
Context-2,+2('tire') = {['broke','a','hitting', 'a'], ['changed', 'the']}

Word-Context matrix

Words ≡ Context words
Rows of X capture similarity yet X is still high dimensional and sparse.

Context words

… cook eat … changed broke …

Words

cake … 10 20 … 0 0 …

steak … 12 22 … 0 0 …

bwoah … 7 10 … 0 0 …

engine … 0 0 … 3 10 …

tire … 0 0 … 10 1 …

… … … … … … … …

Dense representations
We can learn a projection of feature vectors v(f) into a low dimensional space
Rk, k ≪ |F|, of continuous space word representations (i.e. word embeddings).

Embed: R|F| → Rk

Embed(v(f)) = e(f)

We force features to share dimensions on a reduced dense space
↓

Let’s group/align/project them by their syntactic/semantic similarities!

SVD
Singular Value Decomposition is a decomposition method of a matrix X of size
m·n into three matrices UΣV*, where:

U is an orthonormal matrix of size m·n

Σ is a diagonal matrix of size n·n, with values σ1, σ2… σn

V is an orthonormal matrix of size n·n, V* is its conjugate transpose

σ1, σ2… σn of Σ are the singular values of X, sorted by decreasing magnitude.

Keeping the top k values is a least-square approximation of X

Rows of Uk of size m·k are the dense representations of the features

SVD

By Nicoguaro (Own work) [CC BY 4.0], via Wikimedia Commons

U

𝛴 V
m

n n n

n n

U

𝛴 V
m

k k n

k k

https://commons.wikimedia.org/wiki/File:GaussianScatterPCA.svg
http://creativecommons.org/licenses/by/4.0

GloVe
GloVe: Global Vectors for Word Representation is a count-based model that
implicitly factorizes the word-context matrix based on the observation that the
ratio of conditional probabilities better captures the semantic relations
between words.

← eqn 8 of GloVe paper

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/pubs/glove.pdf

GloVe
← eqn 8 of GloVe paper

Weighting function to filter out
rare co-occurrences and to
avoid frequent ones to dominate

embedding vectors
(compressed)

co-occurrence matrix
(sparse)

This part implements, as a least
square problem, the equation that
defines the model:

https://nlp.stanford.edu/pubs/glove.pdf

Word2Vec
Skip-gram and CBoW models of Word2Vec define tasks of predicting a context
from a word (Skip-gram) or a word from its context (CBoW).

They are both implemented as a two-layers linear neural network in which
input and output words one-hot representations which are encoded/decoded
into/from a dense representation of smaller dimensionality.

wt-2 wt-1 wt+1 wt+2

wt

hCBoW

wt-2 wt-1 wt+1 wt+2

wt

hSkip-gram

https://arxiv.org/abs/1301.3781

Word2Vec
Embeddings are a byproduct of the word
prediction task.

Even though it is a prediction tasks, the network
can be trained on any text, no need for
human-labeled data!

The context window size ranges between two
and five words before and after the central word.

Longer windows capture more semantic, less syntax.

A typical size for h is 200~300.

TITOLO

Skip-gram
w vectors are high dimensional, |F|

h is low dimensional (it is the size of the
embedding space)

WI matrix is |F|·|h|. It encodes a word into
a hidden representation.
Each row of WI defines the embedding of
the a word.

WO matrix is |h|·|F|. It defines the
embeddings of words when they appears in
contexts.

softmax

wt-2 wt-1 wt+1 wt+2

wt

h

WO

WI

u

Skip-gram
h = wtWI ← h is the embedding of word wt

u = h WO ← ui is the similarity of h with
 context embedding of wi in WO

Softmax converts u to a probability
distribution y:

yi= exp(ui)/∑j∊F exp(uj)
softmax

wt-2 wt-1 wt+1 wt+2

wt

h

WO

WI

u

Skip-gram
Loss: - log p(wt-2 , wt-1 , wt+1 , wt+2|wt) =

= - log Πc∊ C exp(uc) / ∑j∊F exp(uj) =

= - ∑c∊ C exp(uc) + C log ∑j∊ F exp(uj)

i.e., maximize probability of context

- ∑c∊ C exp(uc)

and minimize probability of the rest

 + C log ∑j∊ F exp(uj)
softmax

wt-2 wt-1 wt+1 wt+2

wt

h

WO

WI

u

Negative sampling
The log ∑j∊F exp(uj) factor has a lots of terms
and it is costly to compute.

Solution: compute it only on a small sample of
negative examples, i.e.,

log ∑j∊E exp(uj)

where words in E are just a few (e.g., 5) and
they are sampled using a biased unigram
distribution computed on training data:

softmax

wt-2 wt-1 wt+1 wt+2

wt

h

WO

WI

u

CBoW
CBoW stands for Continuous Bag of
Word.

It's a mirror formulation of the
skip-gram model, as context words
are used to predict a target word.

h is the average of the embedding for
the input context words.

ui is the similarity of h with the word
embedding wt in WO

wt-2 wt-1 wt+1 wt+2

wt

h

WI

WO

u

softmax

Which model to choose?
Levy and Goldberg proved that Word2Vec skip-gram with negative sampling
(SGNS) implicitly computes a factorization of a variant of X.

Levy, Goldberg and Dagan ran an extensive comparison of SVD, CBoW, SGNS,
GloVe.

● Results indicate no clear overall winner.
● Parameters play a relevant role in the outcome of each method.
● Both SVD and SGNS performed well on most tasks, never

underperforming significantly.
● SGNS is suggested to be a good baseline, given its lower computational

cost in time and memory.

http://papers.nips.cc/paper/5477-neural-word-embedding-as-implicit-matrix-factorization
https://transacl.org/ojs/index.php/tacl/article/view/570/124

Computing embeddings
The training cost of Word2Vec is linear in the size of the input.

The training algorithm works well in parallel, given the sparsity of words in
contexts and the use of negative sampling. The probability of concurrent
update of the same values by two processes is minimal → let's ignore it when
it happens (a.k.a., asynchronous stochastic gradient descent).

Can be halted/restarted at any time.

The model can be updated with any data (concept drift/ domain adaptation).

https://groups.google.com/forum/#!msg/word2vec-toolkit/NLvYXU99cAM/rryQhcaxKSQJ

Computing embeddings
Gensim provides an efficient and detailed implementation.

sentences = [['this','is','a','sentence'],

['this','is','another','sentence']]

from gensim.models import Word2Vec

model = Word2Vec(sentences)

This is a clean implementation of skip-grams using pytorch.

https://radimrehurek.com/gensim/
https://github.com/fanglanting/skip-gram-pytorch

Which embeddings?
Both WI and WO define embeddings, which one to use?

● Usually just WI is used.
● Average pairs of vectors from WI and WO into a single one.
● Append one embedding vector after the other, doubling the length.

Testing embeddings
Testing if embeddings capture
syntactic/semantic properties.

Analogy test:
Paris stands to France as Rome stands to ?
Writer stands to book as painter stands to ?
Cat stands to cats as mouse stands to ?

 e('France') - e('Paris') + e('Rome') ~ e('Italy')

a : b = c : d

https://aclweb.org/aclwiki/Google_analogy_test_set_(State_of_the_art)

The impact of training data
The source on which a model is trained determines what semantic is captured.

WIKI BOOKS WIKI BOOKS

sega chianti

dreamcast motosega radda merlot

genesis seghe gaiole lambrusco

megadrive seghetto montespertoli grignolino

snes trapano carmignano sangiovese

nintendo smerigliatrice greve vermentino

sonic segare castellina sauvignon

FastText word representation
FastText extends the W2V embedding model to ngrams of the words.

The word "goodbye" is also represented with a set of ngrams:

 "<go" (star of word), "goo","ood", "odb", "dby", "bye", "ye>" (end of word)

The length of the ngram is a parameter.

Typically all ngrams of length from 3 to 6 are included.

https://fasttext.cc/
https://arxiv.org/pdf/1607.04606.pdf

FastText word representation
The embedding of a word is determined as the sum
of the embedding of the word and of the embedding
of its ngrams.

Subword information allows to give an
embedding to OOV words.

Subword information improves
the quality of misspelled words.

Pretrained embeddings for
200+ languages.

https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://fasttext.cc/docs/en/unsupervised-tutorial.html
https://fasttext.cc/docs/en/unsupervised-tutorial.html
https://fasttext.cc/docs/en/unsupervised-tutorial.html

Exploring embeddings

http://esuli.it/demo/embeddings/
http://esuli.it/demo/embeddings/
http://projector.tensorflow.org/
http://projector.tensorflow.org/

Word embeddings to documents
How to represent a document using word embeddings?

● average
● max
● max+min (double length)
● Doc2Vec
● As a layer in a more complex neural network

Doc2Vec
Proposed by Le and Mikolov, Doc2Vec
extends Word2Vec by adding input
dimensions for identifiers of documents.

WI matrix is (|D|+|F|)·|h|.

Documents ids are projected in the same
space of words.

The trained model can be used to infer
document embeddings for previously unseen
documents - by passing the words
composing them.

wt-2 wt-1 wt+1 wt+2

wt

h

WO

u

softmax

docId

WI

softmax

docId

h

WO

WI

u

wt-1 wt wt+1 wt+2wt-2

https://arxiv.org/pdf/1405.4053v2.pdf

Exploring embeddings
Documents embedding can be used as vectorial representations of
documents in any task.

When the document id is associated to more than one actual document (e.g.,
id of a product with multiple reviews), Doc2Vec is a great tool to model
similarity between objects with multiple descriptions.

http://esuli.it/demo/embeddings/
http://esuli.it/demo/embeddings/

Embeddings in neural networks
An embedding layer in neural networks is typically the first layer of the
network.

It consists of a matrix W of size |F|· n , where n is the size of the embedding
space.

It maps words to dense representations.

It can be initialized with random weights or pretrained embeddings.

During learning weights can be kept fixed (it makes sense only when using
pretrained weights) or updated, to adapt embeddings to the task.

OOV words and padding
LMs that use a vocabulary do not model out-of-vocabulary words.

Add a special unknown word (and embedding) for such words, to be learned
during training.

NNs usually process examples in batches, i.e., set of k examples.

Input sentences in a batch are usually required to be of the same length.

For this reason a special padding word (and embedding) is added before/after
(be consistent!) words of shorter sentence to match the length of the longest
one.

Embeddings in neural networks

Example:
https://github.com/fchollet/keras/blob/master/examples/imdb_cnn.py

Another example:
https://machinelearningmastery.com/use-word-embedding-layers-deep-learni
ng-keras/

Embeddings

Text:
"all work and no play..."

Sequence of word ids:
[2,4,1,8,10,5,0,0,0,0,0,0]

Sequence of embedding
vectors:
[[0.2,-0.3,0.9,-0.2...0.8],
[-0.1,0.7,0.7,-0.1…-0.1],
[0.2,-0.3,0.9,-0.2...0.8],
[0.1,0.2,0.3,0.1…0.5],
...
[0,1,0.4,0,0,0.5,0...0]]

Pretrained values

Convolutional

Recurrent

https://github.com/fchollet/keras/blob/master/examples/imdb_cnn.py
https://machinelearningmastery.com/use-word-embedding-layers-deep-learning-keras/
https://machinelearningmastery.com/use-word-embedding-layers-deep-learning-keras/

Recurrent Neural Networks
o

A Recurrent Neural Network (RNN) is a neural
network in which connections between units form a
directed cycle.

Cycles allow the network to have a memory of
previous inputs, combining it with current input.

RNNs are fit to process sequences, such as text.

Text can be seen as a sequence of values at many
different levels: characters, words, phrases…

Suggested read

x
U

s
V

W

ot-1xt-1

U
st-1

V

W

otxt

U
st

V

W

ot+1xt+1

U
st+1

V

W

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Char-level LM & text generation
RNNs are key tools in the implementation of
many NLP applications, e.g., machine
translation, summarization, or image captioning.

A RNN can be used to learn a language model
that predicts the next character from the
sequence of previous ones.

The typical RNN node that is used is an Long
Short Term Memory (LSTM), which is robust to
typical issues of RNNs.

na
U

s
V

W

' 'n
U

s
V

W

a' '
U

s
V

W

pa
U

s
V

W

pp
U

s
V

W

lp
U

s
V

W

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

ELMo
ELMo (Embeddings from Language Models) exploits the hidden states of a
deep, bi-directional, character-level LSTM to give contextual representations to
words in a sentence.

na
A

f'
C

E

' 'n
A C

a' '
A C

pa
A C

pp
A C

lp
A C

f
B

D

f
B

D

f
B

D

f
B

D

f
B

D

f
B

D

E

E

E

E

E

f'

f'

f'

f'

f'

na
F

b
H

J

' 'n
F H

a' '
F H

pa
F H

pp
F H

lp
F H

b'
G

J

b'
G

J

b'
G

J

b'
G

J

b'
G

J

b'
G

J

J

J

J

J

J

b

b

b

b

b

The embedding for a word is a
task-specific weighted sum of the
concatenation of the f,b vectors
for each level of the LSTM, e.g.:

v(token) = w [f, b]token +w' [f'
,b']token

https://arxiv.org/pdf/1802.05365.pdf

CoVe, GPT, BERT
Other recent proposals exploit RNN and/or other mechanisms such as
Attention, to assign contextualized embeddings to words:

● CoVE (Context Vector), uses the hidden state of a Machine Translation
network.

● GPT (Generative Pre-Training), learns a language model using attention
and then fine tunes it to the task of interest.

● BERT (Bidirectional Encoder Representations from Transformers), extends
GPT with bidirectional language modeling.

https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1708.00107.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://blog.openai.com/language-unsupervised/
https://arxiv.org/abs/1810.04805

