
Introduction to 
Python 2/2

Text Analytics - Andrea Esuli



Flow control

2



Python coding style
Code blocks are identified by indentation (no “{ }” à la C, C++, C#, Java…).
White lines have no effect on blocks.

if a < 1:

    print(‘a is < than 1’) # printed when if evaluates to True

    print(‘a <= than 0’)   # printed when if evaluates to True

print(‘a is ‘, a)          # always printed

3



If/else
if name is None: # test expression

print('No name specified') # if block

elif name in ages: # else block, test of the second if

print(name,'is',ages[name],'years old')

else: # else of the second if

print('Age of',name,'is unknown')

print('Always printed') # outside if

The if block is executed when the test expression evaluates to True.
The else block (when present) is executed when the test evaluates to False.

elif is the syntax to join multiple tests in a cascade.
4



While
count = 10

while count > 0:

print(count,'more to go')

count -= 1

print('done!')

The while loop is executed as long as the test expression evaluates to True.

5



While
a = [1, 2, 3, 4, 5, 6, 7]

while len(a)>0: # continue jumps here

value = a.pop()

if value == 3:

break # test it also with continue

print('found',value)

print('done') # break jumps here

A break statement in a loop immediately ends it, jumping to the next 
statement after the while block.

A continue statement in a loop immediately ends it, jumping back to testing 
the test expression. 6



For
for item in collection:

# do something on each item of the collection

In Python, the for loop syntax is most similar to Java and C# "foreach" syntax 
than traditional C and C++ for syntax.

The "collection" object must be an iterable object (e.g., list, tuple, string, set, 
dictionary, generator), i.e., an object that can produces an iterator over its 
elements.

for letter in 'ciao':

print(letter.upper())

break/continue statements also work in for loops. 7



For
By default dictionaries return an iterator of their keys:

for name in ages: # equivalent to ages.keys()

print(name,'is',ages[name],'years old')

Andrea is 39 years old

Giuseppe is 67 years old

Paolo is 58 years old

8



For
Loops over numeric ranges can be done using the range function:

for i in range(5): # default start is zero

print(i)

Two-valued range(start,end)

list(range(1,10))

Out: [1, 2, 3, 4, 5, 6, 7, 8, 9] 

Three-valued range(start,end,step)

list(range(10,1,-1))

Out: [10, 9, 8, 7, 6, 5, 4, 3, 2] 
9



For
enumerate adds a numeric index to any iterator:

for index,value in enumerate(collection):

print('Value',value,'is in position',index)

zip merges the output of many iterators into tuples:

for a, s, c in zip([20,25,23],['M','F','M'],['PI','FI','LU']):

print(a,s,c)

20 M PI

25 F FI

23 M LU
10



Exceptions
Severe errors are signaled by raising an exception.

a = [1,2,3]

b = a[5]

KeyError: 5

Without the expected value computation cannot continue.
Unhandled exceptions stop the computation.

try: # Telling the interpreter that you know

b = a[5] # that something can go wrong.

except KeyError: # Telling the errors you can manage.

b = -1 # Code to execute when the exception is raised.
11

https://docs.python.org/3/tutorial/errors.html


Functions

12



Functions
A function is a block of reusable code to perform a task.

It can take arguments as input, it can return some values as output.
It can also produce side effects (e.g., modify a global variable, write to a file).

def oldest(name_age_dict):

max_age = -1

oldest_name= None

for name in name_age_dict:

if name_age_dict[name]>max_age:

max_age = name_age_dict[name]

oldest_name = name

return oldest_name 13



Functions
Arguments passed to a function are evaluated and assigned to the variable of 
the function (a new one at each invocation).
Argument assignment works the same as any other assignment.

def append_one(alist):

alist.append(1)

a = ['a']

append_one(a)

a

Out: ['a',1]

Advice: when possible prefer pure functions over side effects

def append_one(alist):

alist = alist+[1]

a = ['a']

append_one(a)

a

Out: ['a']

14



Functions
A pure function is a function that interacts with the rest of a program only 
through its arguments (which the function does not modify), and its return 
value.

def append_one(alist):

return alist + [1]

a = ['a']

a = append_one(a)

a

Out: ['a',1]

15



Functions
All functions return a value, even those without a return. They return None.

Arguments can have default values:

import random

def roll_dices(number_of_dices = 1):

sum = 0

for i in range(number_of_dices):

sum += random.randint(1,6)

return sum

roll_dices(),roll_dices(2)

Out: (3,8)
16



Functions
Functions are objects. They can be manipulated as any other data type.

def my_operation(x):

return x**x

def apply(values, function):

results = []

for value in values:

results.append(function(value))

return results

apply([1,2,3,4,5], my_operation)

Out: [1, 4, 27,  256, 3125] 17



Lambda
A lambda expression is an anonymous function made of a single expression.

Lambdas are useful to define short functions used only in a specific point.

lambda x: x**2 # x is argument, there can be zero or many

Out: function <....>

f = lambda x: x**2 # this line is equivalent to

def f(x): # these two

return x**2 # lines

a = [('a',5), ('b', 1), ('c', 3), ('d', 2)]

a.sort(key=lambda x: x[1]) # sort by the second element

Out: [('b', 1), ('d', 2), ('c', 3), ('a', 5)] 18



Iterators

19



Iterators
An iterator sequentially returns the elements of a collection.

The length of the sequence may be not known, not computable, or even 
(potentially) infinite.

An iterator can be created on iterable types (lists, tuples, strings…) with the iter 
function.

iterator = iter([0, 1, 2, 3])

20



Iterators
iterator = iter([0, 1, 2, 3])

The next function returns the next element of the collection, or a StopIteration 
exception

next(iterator)

Out: 0

next(iterator)

Out: 1

next(iterator)

Out: 2

next(iterator)

StopIteration 21



Generators
Generators are functions that by using the yield statement act as iterators:

def infinite():

    i = 0

    while True:

        yield i

        i += 1

N = infinite()

N

Out: <generator object infinite at 0x000001CBD92EAD58>

next(N), next(N), next(N)

Out: 0, 1, 2 22

http://intermediatepythonista.com/python-generators


Generators
The main advantage of generators over iterators is cleanliness and readability 
of code,  i.e., iterators without the overhead of writing all their code.

class Infinite:

    def __init__(self):

        self.current = 0

    def __iter__(self):

        return self

    def __next__(self):

        next_value = self.current

        self.current += 1

        return next_value
23



Generators
Generator functions can take arguments to produce different outputs:

def infinite(start = 0, step = 1):

    i = start

    while True:

        yield i

        i += step

N = infinite(10,5)

next(N), next(N), next(N)

Out: 10, 15, 20

24



List comprehension
List comprehension is a specialized python construct to define lists with a 
clean and compact syntax.

a = [x**2 for x in range(6)]

is equivalent to

a = list()
for x in range(6):

a.append(x**2)

25



List comprehension
List comprehension is a specialized python construct to define lists with a 
clean, compact, and math-like syntax.

a = [x**2 for x in range(6)]

a = { x2 | x ∈ (0,5) }

is equivalent to

a = list()

for x in range(6):

a.append(x**2)

26



List comprehension
The comprehension can include an if clause:

a = [x**2 for x in range(6) if x%2==0]

is equivalent to

a = list()

for x in range(6):

if x%2==0:

a.append(x**2)

Ternary operator if-else can be used to define more complex tests:

a = [x**2 if x%2==0 else -x for x in range(6)]
27

https://docs.python.org/3/faq/programming.html#is-there-an-equivalent-of-c-s-ternary-operator


List comprehension
Comprehension can be nested

text = ['never', 'gonna', 'give', 'you', 'up']

[char for word in text for char in word ]

Out: ['n', 'e', 'v', 'e', 'r', 'g', 'o', 'n', 'n', 'a'...]

output = list()

for word in text:

for char in word:

output.append(char)

output

Out: ['n', 'e', 'v', 'e', 'r', 'g', 'o', 'n', 'n', 'a'...]
28

https://www.youtube.com/watch?v=oHg5SJYRHA0


List comprehension
The same notation with round brackets produces a generator

a = [x**2 for x in range(6)]

type(a)

Out: list

a = (x**2 for x in range(6))

type(a)

Out: generator

29



List comprehension
Generators are lazy!

even = [x for x in infinite() if x%2==0]

Out: MemoryError

even = (x for x in infinite() if x%2==0)

next(even)

Out: 0

next(even)

Out: 2

next(even)

Out: 4 30



Classes, Modules

31



Classes
Python supports object oriented programming.

class Person:

def __init__(self,name, age):# constructor

self.name = name   # instance variables

self.age = age # self is like 'this' in Java, C#

def young(self): # method that return a value

return self.age < 40

def birthday(self): # method that changes the state

self.age += 1          # of the object

32

https://www.tutorialspoint.com/python/python_classes_objects.htm


Classes
Why Python always requires "self"?

"Explicit is better than implicit."

Using "self" makes clear if a variable refers to the instance object or not.

All variable methods and variables are visible (i.e. public, no protected or 
private fields).

Convention: add two underscores (e.g. self.__name) to mark a field as "please 
don't touch directly".

Use dir(obj) to list all names in the scope of obj.

33

https://www.python.org/dev/peps/pep-0020/
https://docs.python.org/3.6/library/functions.html#dir


Classes
A class can have class variables, shared by all instances.

class Person():

population = 0

def __init__(self, name, age):

self.name = name

self.age = age

Person.population += 1

def __del__(self):

Person.population -=1

34



Classes
def young_test(some_person):

if some_person.young():

print(some_person.name, 'is a young person')

else:

print(some_person.name, 'was a young person')

io = Person('Andrea', 39)

young_test(io)

Out: 'Andrea is a young person'

io.birthday()

young_test(io)

Out: 'Andrea was a young person'
35



Classes
Inheritance allow to model complex class relations.

class Researcher(Person):

def __init__(self, name, age, discipline):

super().__init__(name, age)

self.discipline = discipline

def young():

return True

io = Researcher('Andrea',39,'Machine Learning')

io.birthday()

io.young()

Out: True 36



Custom exceptions
Exceptions are objects. Exception types must derive from the Exception class.

class TooYoung(Exception):

pass

class Researcher(Person):

__min_age = 3

def __init__(self, name, age, discipline):

if age < __min_age:

raise TooYoung()

super().__init__(name, age)

self.discipline = discipline

37

https://docs.python.org/3/reference/simple_stmts.html#the-pass-statement


Custom exceptions
researchers = [('Andrea', 39, 'CS'), ('Baby', 2, 'Engineering')]

researchers_obj = list()

people_obj = list()

for name, age, discipline in researchers:

try:

researchers_obj.append(Researcher(name, age, discipline))

except TooYoung:

people_obj.append(Person(name, age))

38



Modules
Any script can be imported into another using the import statement.

import math

math.factorial(10)

The name of the module defines a namespace. Everything defined in the 
module can be referred as module.<name>

Import searches of a .py file in the paths listed in the sys.path list.

import sys

print(sys.path)

Out: ['', 'C:\\Programs\\Anaconda3\\envs\\py3\\Scripts', …]
39



Modules
from math import factorial, exp

factorial(10), exp(10)

The "from" syntax copies the specified names into the current namespace. 
Use * to copy all the names (from module import *). 
Note: be careful to not overwrite existing names. Use "as" to specify a 
different name to be used in the current namespace.

import math as mymath

mymath.factorial(10)

from math import factorial as fct

fct(10) 40



Modules
Note: import actually interprets the script content.

mymodule.py: print('ciao')

  a = 10

import mymodule

Out: ciao

mymodule.a

Out: 10

Use __name__ to tell if the script is executed from an import or as a program.

if __name__ == "__main__":  # stuff to be run when used as script

   print('ciao') 41

https://stackoverflow.com/questions/419163/what-does-if-name-main-do


Modules
Some typically used modules:

● sys System-specific stuff (argv, path, maxint, stdin…)
● os OS-related stuff (low level I/O, makedirs, rename…)
● math Typical math functions (exp, sin, asin…)
● random Random number generation
● string, re Text manipulation, regular expressions
● pickle Serialization
● csv, json, html, xml Formatters
● time, datetime Time management and formatting
● threading Parallel processing

42

https://docs.python.org/3/library/index.html


I/O

43



Input
The input() function waits for user input, returning it as a string.

people = list()

while True:

name = input('name? ')

age = int(input('age? '))

people.append(Person(name, age))

stop_check = input("enter 'x' to stop creating persons ")

if stop_check == 'x':

break

44



Encodings
Character encodings are used to map 
characters to single- or multi-byte 
representations, for their 
transmission and storage.

ASCII is a seven bit character 
encoding dating back to 1963. It was 
used on teleprinters.

ASCII has been extended to many 
different encodings designed to 
handle language-specific characters, 
e.g. ã, ç, é, è, ™, Д, …. 45



Encodings
Unicode is a standard (dating back to 
1988) for the consistent encoding, 
representation, and handling of text 
expressed in most of the world’s writing 
systems.

UTF-8 is the most common format 
adopted for the encoding of unicode 
characters (backward compatible with 
ASCII).

Always use UTF-8.
46

http://utf8everywhere.org/
https://commons.wikimedia.org/w/index.php?curid=35027551
https://w3techs.com/technologies/history_overview/character_encoding/ms/y


Encodings
Using the wrong encoding can results in I/O errors or losing information.

Traceback (most recent call last ) :

File ” text indexing .py”, line 107, in <module> main()

File ” text indexing .py”, line 47, in main for row in reader :

File ”codecs.py”, line 319, in decode

( result , consumed) = self. buffer decode (data, self . errors , final )

UnicodeDecodeError: ’utf−8’ codec can’t decode byte 0xf3 in position 5625: invalid 
continuation byte

L’Universit□ di Pisa □ una delle pi□ antiche e 
prestigiose universit□ italiane e d’Europa.

Encoding can be guessed: https://github.com/chardet/chardet
47

https://github.com/chardet/chardet


Files
The open function returns an object to operate on a file, depending on the 
mode with which it is opened.

A mode is a combination of an open mode (r/w/x/a) and a I/O mode (t/b), and 
an optional '+' for combined read/write.

● 'r' open for reading (default)
● 'w' open for writing, truncating the file first
● 'x' open for exclusive creation, failing if the file already exists
● 'a' open for writing, appending to the end of the file if it exists
● 'b' binary I/O
● 't' text I/O (default)
● '+' open a disk file for updating (reading and writing) 48

https://docs.python.org/3/library/functions.html#open


Files
file = open('filename', mode='w', encoding='utf-8')

file.write('ciao\n') # newlines are not added

file.write('hello\n')

file.close()    # remember to close files

file = open('filename', encoding='utf-8')

next(file)   # a text file object acts

Out: 'ciao\n'        # as an iterator over

next(file)             # its lines

Out: hello\n'

49



Files
The with statement automatically manages closing open file, even in case of 
exceptions

with open('filename', mode='w', encoding='utf-8') as file:

file.write('ciao\n')

file.write('hello\n')

A typical way to read files is in for loops:

with file = open('filename', encoding='utf-8') as file:

for line in file:

print(line)

50



CSV files
The csv module is a file wrapper that implements import/export of data in 
comma separated values format.

import csv

data = [['Andrea', 39], ['Giuseppe', 67], ['Paolo', 59]]

with open('data.csv', mode='w', encoding='utf-8', newline='') as 

outfile:

writer = csv.writer(outfile)

writer.writerows(data)

51

https://docs.python.org/3/library/csv.html


CSV files
The reader reads fields as strings, remember to convert to the correct type.

import csv

data = list()

with open('data.csv', encoding='utf-8', newline='') as infile:

reader = csv.reader(infile)

for row in reader:

data.append([row[0],int(row[1])])

data

Out: [['Andrea', 39], ['Giuseppe', 67], ['Paolo', 59]]

52



Pickle
The pickle module implement binary serialization, to save and load native 
python objects.

import pickle

with open('data.pkl', mode='wb') as file:

pickle.dump(data, file)

Note the binary open mode

with open('data.pkl', mode='rb') as file:

    data = pickle.load(file)

53

https://docs.python.org/3/library/pickle.html


One last advice...

54


