
Introduction to
Python

Text Analytics - Andrea Esuli

What is Python?
Python is a programming language created by Guido van Rossum in 1991.

It is a high level, interpreted, dynamic typed, strong typed, garbage collected
language, supporting imperative, functional, and object oriented
programming styles.

The name comes after the Monty Python Flying Circus.

2

https://www.python.org/
https://en.wikipedia.org/wiki/Monty_Python%27s_Flying_Circus

Why Python?
Python has a simple, clean syntax. It’s easy to learn.

The type system doesn’t get in the way of coding, if not required.

Python has rich standard libraries and a large amount of powerful additional
packages:

● Builtin data types for numbers, strings, lists, tuples, sets, dictionaries
● Strong numeric processing capabilities, with support to fast CPU/GPU

parallel processing.
● Large collections of data processing, machine learning tools.
● Good amount of NLP tools.

It’s the fastest growing language among the common used ones. 3

https://stackoverflow.blog/2017/09/06/incredible-growth-python/?platform=hootsuite
http://pypl.github.io/PYPL.html

Which Python version?

 3.5 .6 ...

4

Which Python version?
Python 3 has been first released in 2008 (3.4 in 2014), it is not a recent novelty.

Python 2 had its last release, 2.7, in 2010, since then it is on end-of-life
support.

“Python 2.x is legacy, Python 3.x is the present and future of the language”

Even if you currently use Python 2.x, do a favor to your future self, move to
Python 3.

5

https://wiki.python.org/moin/Python2orPython3

Which Python version?
“But… I use tools that are written in Python 2”

All the major libraries and tools now support Python 3, any Python 2-only
package can be considered as not up to date.

Google released its first version of TensorFlow as a Python 2.7 package.

Now TensorFlow on Windows works only with Python 3.5.

6

https://python3wos.appspot.com/

Which Python version?
“But… my code is written in Python 2”

Although Python 3 is not fully backward compatible, there are only a few
relevant aspects that differ:

● Strings, encodings support (it’s better at supporting non-trivial characters)
● print, except syntax (it’s more intuitive)
● irange → range (it’s more efficient)
● Integer division (it’s more intuitive)

Porting Py2 code to Py3 is simple and supported by dedicated tools.

If Instagram has moved its 400M users platform to Py3 you can TRY to move
your scripts too. 7

https://docs.python.org/3/howto/pyporting.html
https://thenewstack.io/instagram-makes-smooth-move-python-3/

Installation

8

Installation
The open source reference implementation of python is available from the
python foundation.

However, I strongly suggest you to install the Anaconda distribution.

Anaconda can be installed without super user privileges, and it does not
conflicts with existing python installations.

The conda management tool for environments and packages is simple to use,
and it provides precompiled packages for many platforms.

9

https://www.python.org/
https://www.anaconda.com/download/

Installation
Once anaconda python is installed, start the ‘Anaconda prompt’ and issue the
command:

>conda install nb_conda

Fetching package metadata

Solving package specifications: .

Package plan for installation in environment Anaconda3:

The following NEW packages will be INSTALLED:

[..]

Proceed ([y]/n)? y
10

https://www.anaconda.com/download/

Installation - environments
Environments allow to have multiple, distinct, independent installations of
Python, each one with its selection of installed packages:

>conda create -n py2 python=2 ipykernel

>conda create -n py3 python=3 ipykernel

In this way you can manage a dedicated setup for each of your projects.
Messing up one environment does not affects the others.

When you want to use an environment you activate it:

mac/linux>source activate py3

windows>activate py3
11

https://medium.com/towards-data-science/environment-management-with-conda-python-2-3-b9961a8a5097

Installation
The conda command can be used to install/remove packages:

>conda install nltk scikit-learn matplotlib gensim feedparser dill

When a package is not available from the anaconda repository, it can be
installed using the pip tool, the standard package manager for python:

>pip install tweepy

12

https://pypi.python.org/pypi

Installation
Packages and environments can be managed also from jupyter:

From the Anaconda

prompt:

>jupyter notebook

13

http://jupyter.org/

Notebooks
A notebook is an interactive
computational environment, in which
pieces of code are organized in “code
cells” whose output is shown “output
cells” the notebook itself.

Notebooks can contain many types
of cells, such as rich text, plots,
animations.

Notebook are useful for exploration,
experimentation, and reporting
results. 14

Scripts
A script is a Python source file, i.e., text file, with .py extension, that defines a
directly executable program and/or a module declaring functions and classes.

Content of a hello.py file:

def hello():

 print('Hello world!')

hello()

Execution:

>python hello.py

Hello world!

>

15

Which editor?
I strongly suggest PyCharm.

16

https://www.jetbrains.com/pycharm/

Basics of Python

17

Statements
Newlines separates statements.

a = 1

b = 2

c = a + b

Ending “;” à la C, Java... is OPTIONAL, and almost always omitted.

a = 1;

b = 2;c = a + b

18

Variables
A variable is a reference to an object in memory.

a = 1

The object of type int “1” is created in some location in memory, a points to
that location.

b = a

b points to the same location of a, thus returns the object “1”

b = 2

Now b points to the location of a new object int “2”, a still points to “1”
19

Variables
A variable name is composed of letters, numbers, and the underscore
character ‘_’

● Can’t start with a number
1a = 1

SyntaxError: Invalid syntax

● Can use non-ASCII letters in Py3
è_una_variabile = 1

● Cannot be one of these reserved words
False class finally is return None continue for lambda try

True def from nonlocal while and del global not with as elif

if or yield assert else import pass break except in raise
20

Variables
A variable is created when it is first assigned to.

a = 1

b = a

A variable can be deleted.
Deletion removes the name, not the referenced object.

del a

b

Out: 1

21

Variables
When an object loses all references it can be garbage collected.

a = 'hello' # A string object with value ‘hello’

 # is created in memory.

 # Variable ‘a’ points to it.

a = 'world' # Now variable ‘a’ points to this new object.

 # The ‘hello’ object has no references

 # and it is inaccessible, it can be deleted

 # from memory.

Python, Java, C#, Javascript use garbage collection. A dedicated process tracks
references and deletes inaccessible objects.
C, C++ require the user to explicitly perform memory management. 22

Variables
The type of a variable changes with the type of the object it references.

a = 1

type(a)

Out: int

a = 'ciao'

type(a)

Out: str

a = [1,2,3]

type(a)

Out: list

Drawback: type errors are caught only at runtime (yet static typing is possible) 23

http://mypy-lang.org/

Types

24

Types
Python interpreter has a number of built-in types:

● NoneType
● Boolean
● Numeric
● Sequences
● Strings
● Sets
● Dictionaries
● Functions
● Classes and methods

25

https://docs.python.org/3/library/stdtypes.html

None
type(None)

NoneType

None is the single existing object of type NoneType and it is the equivalent of
null for many other programming languages.

It is used to indicate the absence of a referred value, yet the variable exists.

A common use is to reset a variable, to signal ‘soft’ failures, and in the
evaluation of boolean expressions.

Any function that does not explicitly return a value, returns None.

26

Booleans
Truth values are represented by the bool type:

type(True)

Out: bool

Constants: True, False

Equivalent to False: the None value, the value zero in any numeric type,
empty sequences, strings, and collections.

Boolean operators: and, or, not

Boolean tests: ==, !=, >, <, in, is

27

Booleans
Boolean tests: ==, !=, >, <=, >=, <, in, is

== checks for equivalence of value, is checks for equivalence of identity

The id() function returns a unique numeric “identity” of any object.

a = 'hello '

b = 'world'

c = a + b

d = a + b

c==d, c is d, id(c), id(d)

Out: (True, False, 2287672582000, 2287672579120)

28

Numbers
Three numeric types: int, float, complex.

Integers have unlimited precision (try 9**1000)

bool ⊂ int ⊂ float ⊂ complex

Any operation is done using the “wider” type of the two arguments, if it is
defined for the wider type.

Integers can be converted to float only when they are less than:

import sys

sys.float_info.max

Out: 1.7976931348623157e+308
29

https://docs.python.org/3.6/library/stdtypes.html#numeric-types-int-float-complex

Numbers
x + y # sum of x and y

x - y # difference of x and y

x * y # product of x and y

x / y # quotient of x and y

x // y # floored quotient of x and y

x % y # remainder of x / y

-x # x negated

abs(x) # absolute value or magnitude of x

pow(x, y) # x to the power y

x ** y # x to the power y

int(x), float(x), complex(x) # explicit number/string conversion

Big difference w.r.t. py2: the quotient operation ‘/’ produces a float even
when applied on two integers. Integer quotient operation is ‘//’. 30

Numbers
The math module, defines many other mathematical functions.

import math

math.factorial(10)

Out: 3628800

math.gcd(234,224)

Out: 1

math.pi

Out: 3.141592653589793

For scientific computing numpy is the reference package to use.
31

https://docs.python.org/3/library/math.html
https://docs.scipy.org/doc/numpy-dev/user/quickstart.html

Sequence types

32

Lists
A list is a mutable ordered sequence of items of possibly varied type.

Note: Ordered ≠ Sorted

Mutable means that the element of the list can be changed in place.
The identity of the list does not changes when it is modified.

A list is defined using square brackets, with comma separating items.

a = []

a = [1, 2, 3]

a = [1, 2, 3, 'ciao', [], ['a', 4, None]]

33

Tuples
A tuple is an immutable ordered sequence of items of possibly varied type.

Immutable means that once defined an object cannot be modified.
Operations that “modify” an immutable object create in fact a new object.

Round brackets define the empty tuple, otherwise commas define a tuple,
brackets are just a visual clue. Trailing comma is needed only for one-element
tuples.

a = ()

a = 1,

a = 1, 2, 3

Tuples are often used as return value in functions. 34

Strings
A string is an immutable ordered sequence of Unicode characters.

A string is defined by using single quotes or double quotes.

a = 'this is a test' # or "this is a test" it is the same

Triple double quotes define multiline strings.

a = """This is a

multiline string"""

Out: 'This is a\nmultiline string'

Escape sequences allows to put quotes, newlines, tabs, or other non-trivial
chars in strings.

35

https://docs.python.org/3/reference/lexical_analysis.html#string-and-bytes-literals

Accessing elements
Elements of a sequence (it is the same for lists, tuples and strings) can be
accessed using square bracket index notation.

NOTE: the first element of a sequence has index 0!

a = [10, 20, 30]

a[0]

Out: 10

a[1]

Out: 20

len(a) # returns the number of elements in the sequence

Out: 3

len([1, 2, 3, 'ciao', [], ['a', 4, None]]) # ??? 36

Slicing
Slicing is a powerful tool that allows to copy subsequences of a sequence.

a[start_idx:end_idx] # copy from start_idx, stop before end_idx

a[start_idx:] # copy from start_idx through the end of sequence

a[:end_idx] # copy from beginning, stop before end_idx

a[:] # copy all the sequence, different from b=a!!!

a[start_idx:end_idx:step] # only pick items every step

A negative index means it is relative to the end of the sequence.

a = [1, 2, 3, 4, 5]

a[:-2]

Out: [1, 2, 3]
37

in
The in operator checks for the presence of an item in a sequence.

a = [2, 5, 6, 6, 5]

1 in a

Out: False

5 in a

Out True

On strings it matches substrings.

a = 'this is a test'

'a test' in a

Out: True
38

+
The + operator creates a new sequence by concatenating its arguments.

[1, 2, 3] + [4, 5, 6]

Out: [1, 2, 3, 4, 5, 6]

(1, 2, 3) + (4, 5, 6)

Out: (1, 2, 3, 4, 5, 6)

"Hello" + " " + "World"

Out: 'Hello World'

39

*
The * operator creates a new sequence by concatenating as many times the
sequence argument as expressed by the integer argument.

[1] * 9

Out: [1, 1, 1, 1, 1, 1, 1, 1, 1]

[1, [2, 3]] * 3

Out: [1, [2, 3], 1, [2, 3], 1, [2, 3]]

4 * "Hello " + "world" + '!' * 3

Out: 'Hello Hello Hello Hello world!!!'

40

List operations
a = [1, 2, 3]

a.append('a')

a

Out: [1, 2, 3, 'a']

append adds an element at the end of the list

a.insert(2, 'b')

a

Out: [1, 2, 'b', 3, 'a']

insert puts the elements in the position specified by the first argument

41

List operations
a = [1, 2, 3]

a.append([4,5,6])

a

Out: [1, 2, 3, [4,5,6]]

Use extend to copy values for a sequence into another.

a.extend([4,5,6])

a

Out: [1, 2, 3, 4, 5, 6]

Note: + creates a new list, does not modify input lists.

42

List operations
b = a.pop()

b,a

Out: 'a',[1, 2, 3]

pop returns and removes the element at the end of the list.
Use del to remove an element given its position:
del a[1]

a

Out: [1, 3]

remove removes the first instance of the given value:
a.remove(3)

a

Out: [1] 43

List operations
a = ['t','e','s','t']

a.index('t')

Out: 0

index returns position of the first instance of the given value.

a.count('t')

Out: 2

count returns the number of instances equivalent (==) to the given value.

44

List operations
a = [2, 1, 5, 4, 3]

a.reverse()

a

Out: [3, 4, 5, 1, 2]

reverse the list in place.

a.sort()

a

Out: [1, 2, 3, 4, 5]

sort the list in place.

Custom sort can be defined by passing a sorting key function. 45

https://wiki.python.org/moin/HowTo/Sorting

Tuple operations
Being immutable, tuples lack most of the functionalities of lists.

Tuples only have count and index operations.

a = (1, 2, 3, 3, 4, 3, 5, 3, 6, 7)

a.count(3)

Out: 4

a.index(3)

Out: 2

a[2]

Out: 3
46

String operations
Strings can be seen as text-specialized tuples.

They offer a number of text-oriented operations.

capitalize, encode, format, isalpha, islower, istitle, lower,

replace, rpartition, splitlines, title, casefold, endswith,

format_map, isdecimal, isnumeric, isupper, lstrip, rfind, rsplit,

startswith, translate, center, expandtabs, index, isdigit,

isprintable, join, maketrans, rindex, rstrip, strip, upper, count,

find, isalnum, isidentifier, isspace, ljust, partition, rjust,

split , swapcase, zfill

47

https://docs.python.org/3/library/stdtypes.html#string-methods

Print, formatting
The print function prints values on the screen (or in a file).

Many options of string formatting allow to combine text and values.

print('My name is %s and I\'m %d years old' % ('Andrea', 39))

Out: My name is Andrea and I'm 39 years old

In python 2 print is a statement that does not require parentheses.

Use the str() function to get a string representation of any value.

'the list is ' + str([1, 2, 3, 4])

Out: 'the list is [1, 2, 3, 4]'

48

https://pyformat.info/

Regular expressions
A regular expression is a search pattern.

Regular expressions are used to find matching patterns in text and to extract
relevant substrings from text.

The re module defines objects and methods to apply regular expressions to
strings.

Regular expressions are defined as strings that follow a specific syntax.

'[A-Z][a-z]{3}' = match a sequence of any capital letter followed
by exactly three lower-case letters, e.g., 'Pisa'

49

https://docs.python.org/3/library/re.html

Regular expressions
Basic matching

'a' = character a
'abc' = string abc
'a|b' = match a or b
'a*' = zero or more a
'a+' = one or more a
'a{3}' = exactly 3 a
'a{2,5}' = from 2 to 5 a (the more the better)
'a{2,5}?' = from 2 to 5 a (the less the better)
'a{4,}' = at least 4 a
'a{,3}' = at least 3 a

50

Regular expressions
Groups

'(abc)' = group, sequence of characters abc
'(abc)+' = one or more time the sequence
'(?P<name>...)' = group named "name"
'(?P=name)' = match the group name
'(?:)' = non capturing (just to define a sequence)

51

Regular expressions
Characters classes

[abc] = one in set a,b,c
[a-z0-9] = one in set of character from a to z and from 0 to 9
[^a-z] = one character but not those from a to z
\d = one digit character
\D = one non-digit character
\s = one white space character
\S = one non white space character
\w = one word character (e.g. a-z A-Z 0-9 _)
\W = one non-word character

52

Regular expressions
Other matches

^ = start of string
$ = end of string
\n = newline
\r = carriage return
\t = tab

Start exploring regular expressions here and here.

53

https://regexone.com/
https://regexone.com/references/python

Regular expressions
Compilation allows efficient reuse of regular expressions, and a clean
separation between their definition and their use.

tagre = re.compile('<(?P<tag>.+)>(?P<text>.*)</(?P=tag)>')

tagged = tagre.match('<pre>Ciao</pre>')

tagged['tag']

Out: 'pre'

tagged['text']

Out: 'Ciao'

54

Sets and Dictionaries

55

Sets
A set is an unsorted collection of distinct (i.e., no duplicates) objects.

a = set()

a.add(1)

a.add(2)

a

Out: a = {1, 2}

b = set()

b.add('b')

b.add(3)

a.union(b)

Out: {1, 2, 'b', 3} 56

Dictionaries
Dictionaries define a mapping between a set of keys and a set of values.

Keys must have an immutable type.

Values can have any type.

In a dictionary both keys and values can have mixed types.

population = dict() # or population = {}

population['pisa'] = 91104

population['livorno'] = 160027

population

Out: {'pisa': 91104, 'livorno': 160027}
57

Dictionaries
population['pisa']

Out: 91104

'firenze' in population # check if key exists

Out: False

population['firenze'] # exception is raised if key does not exist

KeyError: 'firenze'

Keys are unique, reassigning replaces value:

population['pisa'] = 10000000

population['pisa']

Out: 10000000 58

Dictionaries
del population['livorno']

population['livorno']

KeyError: 'livorno'

Empty a dictionary with clear (also works on sets and lists):

population.clear()

population

Out: {}

59

Dictionaries
ages = {'Andrea': 39, 'Giuseppe': 67, 'Paolo': 58}

ages.keys()

Out: dict_keys(['Andrea', 'Giuseppe', 'Paolo'])

ages.values()

Out: dict_values([39, 67, 58])

ages.items()

Out: dict_items([('Andrea', 39), ('Giuseppe', 67), ('Paolo', 58)])

dict_keys, dict_values, dict_items are mutable views of the dictionary,
i.e., they change as the dictionary changes.
They are iterables.

60

