Language Modeling

Giuseppe Attardi
Text Analytics

IP notice: some slides from: Dan Jurafsky, Jim Martin, Sandiway Fong, Dan Klein
Outline

- Language Modeling (N-grams)
 - N-gram Intro
 - The Chain Rule
 - The Shannon Visualization Method
 - Evaluation:
 - Perplexity
 - Smoothing:
 - Laplace (Add-1)
 - Add-prior
Probabilistic Language Model

- Goal: assign a probability to a sentence
- Machine Translation:
 - $P(\text{high winds tonite}) > P(\text{large winds tonite})$
- Spell Correction
 - "The office is about fifteen minuets from my house"
 - $P(\text{about fifteen minutes from}) > P(\text{about fifteen minuets from})$
- Speech Recognition
 - $P(\text{I saw a van}) >> P(\text{eyes awe of an})$
- Summarization, question--answering, etc.
Why Language Models

- We have an English speech recognition system, which answer is better?

<table>
<thead>
<tr>
<th>Speech</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>speech recognition system</td>
<td></td>
</tr>
<tr>
<td>speech cognition system</td>
<td></td>
</tr>
<tr>
<td>speck podcast histamine</td>
<td></td>
</tr>
</tbody>
</table>

- Language models tell us the answer!
We want to compute

\[P(w_1, w_2, w_3, w_4, w_5 \ldots w_n) = P(W) \]

= the probability of a sequence

Alternatively we want to compute

\[P(w_5 | w_1, w_2, w_3, w_4) \]

= the probability of a word given some previous words

The model that computes

\[P(W) \text{ or } P(w_n | w_1, w_2 \ldots w_{n-1}) \]

is called the language model.

A better term for this would be “The Grammar”

But “Language model” or LM is standard
Computing $P(W)$

- How to compute this joint probability:

 $$P(\text{"the"}, \text{"other"}, \text{"day"}, \text{"I"}, \text{"was"}, \text{"walking"}, \text{"along"}, \text{"and"}, \text{"saw"}, \text{"a"}, \text{"lizard"})$$

- Intuition: let’s rely on the Chain Rule of Probability
The Chain Rule

- Recall the definition of conditional probabilities

\[P(B \mid A) = \frac{P(A \land B)}{P(A)} \]

- Rewriting:

\[P(A \land B) = P(A)P(B \mid A) \]

- More generally

\[P(A,B,C,D) = P(A)P(B \mid A)P(C \mid A,B)P(D \mid A,B,C) \]

- In general

\[P(x_1, x_2, x_3, \ldots x_n) = P(x_1)P(x_2 \mid x_1)P(x_3 \mid x_1, x_2) \ldots P(x_n \mid x_1 \ldots x_{n-1}) \]
The Chain Rule applied to joint probability of words in sentence

\[P(w^n_1) = P(w_1)P(w_2|w_1)P(w_3|w_1^2) \ldots P(w_n|w_1^{n-1}) \]

\[= \prod_{k=1}^{n} P(w_k|w_1^{k-1}) \]

\[P(\text{"the big red dog was"}) = \]

\[P(\text{the}) \cdot P(\text{big}|\text{the}) \cdot P(\text{red}|\text{the big}) \cdot P(\text{dog}|\text{the big red}) \cdot P(\text{was}|\text{the big red dog}) \]
Obvious estimate

- How to estimate?
 \[P(\text{the} \mid \text{its water is so transparent that}) \]

\[P(\text{the} \mid \text{its water is so transparent that}) = \frac{C(\text{its water is so transparent that the})}{C(\text{its water is so transparent that})} \]
Unfortunately

- There are a lot of possible sentences
- We will never be able to get enough data to compute the statistics for those long prefixes

\[P(\text{lizard}|\text{the, other, day, I, was, walking, along, and, saw, a}) \]

or

\[P(\text{the}|\text{its water is so transparent that}) \]
Markov Assumption

- Make the simplifying assumption
 \[P(lizard|\text{the, other, day, I, was, walking, along, and, saw, a}) = P(lizard|a) \]
- or maybe
 \[P(lizard|\text{the, other, day, I, was, walking, along, and, saw, a}) = P(lizard|\text{saw, a}) \]
So for each component in the product, replace with the approximation (assuming a prefix of N)

$$P(w_n|w_1^{n-1}) \approx P(w_n|w_{n-N+1}^{n-1})$$

- Bigram model

$$P(w_n|w_1^{n-1}) \approx P(w_n|w_{n-1})$$
N-gram models

- We can extend to trigrams, 4-grams, 5-grams
- In general this is an insufficient model of language
 - because language has long-distance dependencies:
 - “The computer which I had just put into the machine room on the fifth floor crashed.”
- But we can often get away with N-gram models
Estimating bigram probabilities

The Maximum Likelihood Estimate

\[
P(w_n|w_1^{n-1}) \approx \frac{\text{count}(w_n^{n-1}, w_1^{n-N+1})}{\text{count}(w_1^{n-N+1})}
\]

\[
P(w_n|w_1^{n-1}) \approx \frac{\text{count}(w_{n-1}, w_n)}{\text{count}(w_{n-1})}
\]
An example

<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

\[
P(\text{I} | <s>) = \frac{2}{3} = .67 \quad P(\text{Sam} | <s>) = \frac{1}{3} = .33 \quad P(\text{am} | \text{I}) = \frac{2}{3} = .67
\]

\[
P(<s> | \text{Sam}) = \frac{1}{2} = 0.5 \quad P(\text{Sam} | \text{am}) = \frac{1}{2} = .5 \quad P(\text{do} | \text{I}) = \frac{1}{3} = .33
\]

\[
P(w_n | w_{n-N+1}^{n-1}) = \frac{C(w_{n-N+1}^{n-1} w_n)}{C(w_{n-N+1}^{n-1})}
\]

This is the Maximum Likelihood Estimate, because it is the one which maximizes \(P(\text{Training set} | \text{Model}) \)
The **Maximum Likelihood Estimate** of some parameter of a model M from a training set T
- is the estimate that
 - maximizes the likelihood of the training set T given the model M

Suppose the word “Chinese” occurs 400 times in a corpus of a million words (e.g. the Brown corpus)

What is the probability that a random word from some other text will be “Chinese”

MLE estimate is $400/1000000 = .004$
- This may be a bad estimate for some other corpus

But it is the estimate that makes it **most likely** that “Chinese” will occur 400 times in a million word corpus.
The maximum likelihood method (discrete distribution):

1. Write down the probability of each observation by using the model parameters
2. Write down the probability of all the data
3. Find the value parameter(s) that maximize this probability

Pr(Data | p) = p^6(1 - p)^4

We want to estimate the probability, p, that individuals are infected with a certain kind of parasite.

<table>
<thead>
<tr>
<th>Ind.</th>
<th>Infected</th>
<th>Probability of observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>p</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1 - p</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>p</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>p</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1 - p</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>p</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>p</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1 - p</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>1 - p</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>p</td>
</tr>
</tbody>
</table>
Maximum likelihood

We want to estimate the probability, p, that individuals are infected with a certain kind of parasite.

<table>
<thead>
<tr>
<th>Ind.</th>
<th>Infected</th>
<th>Probability of observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>p</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>$1 - p$</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>p</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>p</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>$1 - p$</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>p</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>p</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>$1 - p$</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>$1 - p$</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>p</td>
</tr>
</tbody>
</table>

Likelihood function:

$$L(p) = \text{Pr(Data } | \text{ } p) = p^6 (1 - p)^4$$

- Find the value parameter(s) that maximize this probability

![Graph showing the likelihood function with a peak at p.]
Computing the MLE

- Set the derivative to 0:

\[0 = \frac{d}{dp} p^6 (1 - p)^4 = \]

\[6p^5 (1 - p)^4 - p^6 4(1 - p)^3 = \]

\[p^5 (1 - p)^3 [6(1 - p) - 4p] = \]

\[p^5 (1 - p)^3 [6 - 10p] \]

- Solutions:
 - \(p = 0 \) (minimum)
 - \(p = 1 \) (minimum)
 - \(p = 0.6 \) (maximum)
can you tell me about any good cantonese restaurants close by
mid priced thai food is what i’m looking for
tell me about chez panisse
can you give me a listing of the kinds of food that are available
i’m looking for a good place to eat breakfast
when is caffe venezia open during the day
Out of 9222 sentences

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>want</th>
<th>to</th>
<th>eat</th>
<th>chinese</th>
<th>food</th>
<th>lunch</th>
<th>spend</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>5</td>
<td>827</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>want</td>
<td>2</td>
<td>0</td>
<td>608</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>to</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>686</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>211</td>
</tr>
<tr>
<td>eat</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>16</td>
<td>2</td>
<td>42</td>
<td>0</td>
</tr>
<tr>
<td>chinese</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>82</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>food</td>
<td>15</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lunch</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>spend</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Raw bigram probabilities

Normalize by unigrams (divide by $C(w_{-1})$):

<table>
<thead>
<tr>
<th>i</th>
<th>want</th>
<th>to</th>
<th>eat</th>
<th>chinese</th>
<th>food</th>
<th>lunch</th>
<th>spend</th>
</tr>
</thead>
<tbody>
<tr>
<td>2533</td>
<td>927</td>
<td>2417</td>
<td>746</td>
<td>158</td>
<td>1093</td>
<td>341</td>
<td>278</td>
</tr>
</tbody>
</table>

Result:

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>want</th>
<th>to</th>
<th>eat</th>
<th>chinese</th>
<th>food</th>
<th>lunch</th>
<th>spend</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>0.002</td>
<td>0.33</td>
<td>0</td>
<td>0</td>
<td>0.0036</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>want</td>
<td>0.0022</td>
<td>0</td>
<td>0.66</td>
<td>0.0017</td>
<td>0.0011</td>
<td>0.0065</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>to</td>
<td>0.00083</td>
<td>0</td>
<td>0.0027</td>
<td>0.28</td>
<td>0.00083</td>
<td>0.0065</td>
<td>0.0065</td>
<td>0</td>
</tr>
<tr>
<td>eat</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.021</td>
<td>0.027</td>
<td>0.056</td>
<td>0</td>
</tr>
<tr>
<td>chinese</td>
<td>0.0063</td>
<td>0</td>
<td>0.014</td>
<td>0</td>
<td>0.00092</td>
<td>0.52</td>
<td>0.0037</td>
<td>0</td>
</tr>
<tr>
<td>food</td>
<td>0.014</td>
<td>0</td>
<td>0.014</td>
<td>0</td>
<td>0</td>
<td>0.0092</td>
<td>0.0029</td>
<td>0</td>
</tr>
<tr>
<td>lunch</td>
<td>0.0059</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>spend</td>
<td>0.0036</td>
<td>0</td>
<td>0.0036</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Bigram estimates of sentence probabilities

\[P(<s> \text{ I want english food } </s>) = \]
\[P(i|<s>) \times P(\text{want}|I) \times P(\text{english}|\text{want}) \times P(\text{food}|\text{english}) \times P(</s>|\text{food}) \]
\[= .000031 \]
What kinds of knowledge?

\[\begin{align*}
P(english | want) & = 0.0011 \\
P(chinese | want) & = 0.0065 \\
P(to | want) & = 0.66 \\
P(eat | to) & = 0.28 \\
P(food | to) & = 0 \\
P(want | spend) & = 0 \\
P(i | <s>) & = 0.25
\end{align*} \]
Practical Issues

- Compute in log space
 - Avoid underflow
 - Adding is faster than multiplying

\[
\log(p_1 \cdot p_2 \cdot p_3 \cdot p_4) = \log(p_1) + \log(p_2) + \log(p_3) + \log(p_4)
\]
Shannon’s Game

- What if we turn these models around and use them to *generate* random sentences that are *like* the sentences from which the model was derived.
The Shannon Visualization Method

- Generate random sentences:
- Choose a random bigram <s>, w according to its probability
- Now choose a random bigram (w, x) according to its probability
- And so on until we choose </s>
- Then string the words together
 <s> I
 I want
 want to
 to eat
 eat Chinese
 Chinese food
 food </s>
Approximating Shakespeare

Unigram

To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have
Every enter now severally so, let
Hill he late speaks; or! a more to leg less first you enter
Are where exeunt and sighs have rise excellency took of.. Sleep knave we. near; vile like

Bigram

What means, sir. I confess she? then all sorts, he is trim, captain.
Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king. Follow.
What we, hath got so she that I rest and sent to scold and nature bankrupt, nor the first gentleman?

Trigram

Sweet prince, Falstaff shall die. Harry of Monmouth’s grave.
This shall forbid it should be branded, if renown made it empty.
Indeed the duke; and had a very good friend.
Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, ’tis done.

Quadrigram

King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A great banquet serv’d in;
Will you not tell me who I am?
It cannot be but so.
Indeed the short and the long. Marry, ’tis a noble Lepidus.
Shakespeare as corpus

- N=884,647 tokens, V=29,066
- Shakespeare produced 300,000 bigram types out of $V^2=844$ million possible bigrams: so, 99.96% of the possible bigrams were never seen (have zero entries in the table)
- Quadrigrams:
 - What's coming out looks like Shakespeare because it is Shakespeare
Unigram

Months the my and issue of year foreign new exchange’s september were recession exchange new endorsed a acquire to six executives

Bigram

Last December through the way to preserve the Hudson corporation N. B. E. C. Taylor would seem to complete the major central planners one point five percent of U. S. E. has already old M. X. corporation of living on information such as more frequently fishing to keep her

Trigram

They also point to ninety nine point six billion dollars from two hundred four oh six three percent of the rates of interest stores as Mexico and Brazil on market conditions
Lesson 1: the perils of overfitting

- N-grams only work well for word prediction if the test corpus looks like the training corpus
 - In real life, it often doesn’t
 - We need to train robust models, adapt to test set, etc.
Train and Test Corpora

- A language model must be trained on a large corpus of text to estimate good parameter values.
- Model can be evaluated based on its ability to predict a high probability for a disjoint (held-out) test corpus (testing on the training corpus would give an optimistically biased estimate).
- Ideally, the training (and test) corpus should be representative of the actual application data.
- May need to adapt a general model to a small amount of new (in-domain) data by adding highly weighted small corpus to original training data.
Smoothing
Smoothing

- Since there are a combinatorial number of possible word sequences, many rare (but not impossible) combinations never occur in training, so MLE incorrectly assigns zero to many parameters (aka sparse data).
- If a new combination occurs during testing, it is given a probability of zero and the entire sequence gets a probability of zero (i.e. infinite perplexity).
- In practice, parameters are smoothed (aka regularized) to reassign some probability mass to unseen events.
 - Adding probability mass to unseen events requires removing it from seen ones (discounting) in order to maintain a joint distribution that sums to 1.
Smoothing is like Robin Hood:

Steal from the rich and give to the poor (in probability mass)

- When we have sparse statistics:
 \[P(w \mid \text{denied the}) \]
 - 3 allegations
 - 2 reports
 - 1 claim
 - 1 request

 7 total

- Steal probability mass to generalize better
 \[P(w \mid \text{denied the}) \]
 - 2.5 allegations
 - 1.5 reports
 - 0.5 claims
 - 0.5 request
 - 2 other

 7 total

Slide from Dan Klein
Laplace smoothing

- Also called add-one smoothing
- Just add one to all the counts!
- Very simple
- MLE estimate:

\[P(w_i) = \frac{c_i}{N} \]

- Laplace estimate:

\[P_{\text{Laplace}}(w_i) = \frac{c_i + 1}{N + V} \]

- Reconstructed counts:

\[c_i^* = (c_i + 1) \frac{N}{N + V} \]
Laplace smoothed bigram counts

Berkeley Restaurant Corpus

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>want</th>
<th>to</th>
<th>eat</th>
<th>chinese</th>
<th>food</th>
<th>lunch</th>
<th>spend</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>6</td>
<td>828</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>want</td>
<td>3</td>
<td>1</td>
<td>609</td>
<td>2</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>to</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>687</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>212</td>
</tr>
<tr>
<td>eat</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>17</td>
<td>3</td>
<td>43</td>
<td>1</td>
</tr>
<tr>
<td>chinese</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>83</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>food</td>
<td>16</td>
<td>1</td>
<td>16</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>lunch</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>spend</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Laplace-smoothed bigrams

\[P^*(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n) + 1}{C(w_{n-1}) + V} \]

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>want</th>
<th>to</th>
<th>eat</th>
<th>chinese</th>
<th>food</th>
<th>lunch</th>
<th>spend</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>0.0015</td>
<td>0.21</td>
<td>0.00025</td>
<td>0.0025</td>
<td>0.00025</td>
<td>0.00025</td>
<td>0.00025</td>
<td>0.00075</td>
</tr>
<tr>
<td>want</td>
<td>0.0013</td>
<td>0.00042</td>
<td>0.26</td>
<td>0.00084</td>
<td>0.0029</td>
<td>0.0029</td>
<td>0.0025</td>
<td>0.00084</td>
</tr>
<tr>
<td>to</td>
<td>0.00078</td>
<td>0.00026</td>
<td>0.0013</td>
<td>0.18</td>
<td>0.00078</td>
<td>0.00026</td>
<td>0.0018</td>
<td>0.055</td>
</tr>
<tr>
<td>eat</td>
<td>0.00046</td>
<td>0.00046</td>
<td>0.0014</td>
<td>0.00046</td>
<td>0.0078</td>
<td>0.0014</td>
<td>0.02</td>
<td>0.00046</td>
</tr>
<tr>
<td>chinese</td>
<td>0.0012</td>
<td>0.00062</td>
<td>0.00062</td>
<td>0.00062</td>
<td>0.00062</td>
<td>0.052</td>
<td>0.0012</td>
<td>0.00062</td>
</tr>
<tr>
<td>food</td>
<td>0.0063</td>
<td>0.00039</td>
<td>0.0063</td>
<td>0.00039</td>
<td>0.00079</td>
<td>0.002</td>
<td>0.00039</td>
<td>0.00039</td>
</tr>
<tr>
<td>lunch</td>
<td>0.0017</td>
<td>0.00056</td>
<td>0.00056</td>
<td>0.00056</td>
<td>0.00056</td>
<td>0.0011</td>
<td>0.00056</td>
<td>0.00056</td>
</tr>
<tr>
<td>spend</td>
<td>0.0012</td>
<td>0.00058</td>
<td>0.0012</td>
<td>0.00058</td>
<td>0.00058</td>
<td>0.00058</td>
<td>0.00058</td>
<td>0.00058</td>
</tr>
</tbody>
</table>
Reconstituted counts

\[c^*(w_{n-1}w_n) = \frac{[C(w_{n-1}w_n) + 1] \times C(w_{n-1})}{C(w_{n-1}) + V} \]

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>want</th>
<th>to</th>
<th>eat</th>
<th>chinese</th>
<th>food</th>
<th>lunch</th>
<th>spend</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>3.8</td>
<td>527</td>
<td>0.64</td>
<td>6.4</td>
<td>0.64</td>
<td>0.64</td>
<td>0.64</td>
<td>1.9</td>
</tr>
<tr>
<td>want</td>
<td>1.2</td>
<td>0.39</td>
<td>238</td>
<td>0.78</td>
<td>2.7</td>
<td>2.7</td>
<td>2.3</td>
<td>0.78</td>
</tr>
<tr>
<td>to</td>
<td>1.9</td>
<td>0.63</td>
<td>3.1</td>
<td>430</td>
<td>1.9</td>
<td>0.63</td>
<td>4.4</td>
<td>133</td>
</tr>
<tr>
<td>eat</td>
<td>0.34</td>
<td>0.34</td>
<td>1</td>
<td>0.34</td>
<td>5.8</td>
<td>1</td>
<td>15</td>
<td>0.34</td>
</tr>
<tr>
<td>chinese</td>
<td>0.2</td>
<td>0.098</td>
<td>0.098</td>
<td>0.098</td>
<td>0.098</td>
<td>8.2</td>
<td>0.2</td>
<td>0.098</td>
</tr>
<tr>
<td>food</td>
<td>6.9</td>
<td>0.43</td>
<td>6.9</td>
<td>0.43</td>
<td>0.86</td>
<td>2.2</td>
<td>0.43</td>
<td>0.43</td>
</tr>
<tr>
<td>lunch</td>
<td>0.57</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.38</td>
<td>0.19</td>
<td>0.19</td>
</tr>
<tr>
<td>spend</td>
<td>0.32</td>
<td>0.16</td>
<td>0.32</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
</tr>
</tbody>
</table>
Note big change to counts

- $C(want\ to)$ went from 608 to 238!
- $P(to|want)$ from 0.66 to 0.26!
- Discount $d = c*/c$
 - d for “chinese food” = 0.10 A 10x reduction!
 - So in general, Laplace is a blunt instrument
- But Laplace smoothing not used for N-grams, as we have much better methods
- Despite its flaws Laplace (add-k) is however still used to smooth other probabilistic models in NLP, especially
 - For pilot studies
 - in domains where the number of zeros isn’t so huge.
Add-a small fraction instead of 1
k = 0.01
Even better: Bayesian unigram prior smoothing for bigrams

- **Maximum Likelihood Estimation**

 \[P(w_2 \mid w_1) = \frac{C(w_1, w_2)}{C(w_1)} \]

- **Laplace Smoothing**

 \[P_{\text{Laplace}}(w_2 \mid w_1) = \frac{C(w_1, w_2) + 1}{C(w_1) + \text{vocal}} \]

- **Bayesian Prior Smoothing**

 \[P_{\text{Prior}}(w_2 \mid w_1) = \frac{C(w_1, w_2) + P(w_2)}{C(w_1) + 1} \]
Lesson 2: zeros or not?

- Zipf’s Law:
 - A small number of events occur with high frequency
 - A large number of events occur with low frequency
 - You can quickly collect statistics on the high frequency events
 - You might have to wait an arbitrarily long time to get valid statistics on low frequency events

- Result:
 - Our estimates are sparse! No counts at all for the vast bulk of things we want to estimate!
 - Some of the zeroes in the table are really zeros. But others are simply low frequency events you haven't seen yet. After all, ANYTHING CAN HAPPEN!
 - How to address?

- Answer:
 - Estimate the likelihood of unseen N-grams!

Slide from B. Dorr and J. Hirschberg
Zipf's law

There is a constant k such that $f \cdot r = k$.

<table>
<thead>
<tr>
<th>Word</th>
<th>Freq. (f)</th>
<th>Rank (r)</th>
<th>$f \cdot r$</th>
</tr>
</thead>
<tbody>
<tr>
<td>the</td>
<td>3332</td>
<td>1</td>
<td>3332</td>
</tr>
<tr>
<td>and</td>
<td>2972</td>
<td>2</td>
<td>5944</td>
</tr>
<tr>
<td>a</td>
<td>1775</td>
<td>3</td>
<td>5235</td>
</tr>
<tr>
<td>he</td>
<td>877</td>
<td>10</td>
<td>8770</td>
</tr>
<tr>
<td>but</td>
<td>410</td>
<td>20</td>
<td>8400</td>
</tr>
<tr>
<td>be</td>
<td>294</td>
<td>30</td>
<td>8820</td>
</tr>
<tr>
<td>there</td>
<td>222</td>
<td>40</td>
<td>8880</td>
</tr>
<tr>
<td>one</td>
<td>172</td>
<td>50</td>
<td>8600</td>
</tr>
<tr>
<td>about</td>
<td>158</td>
<td>60</td>
<td>9480</td>
</tr>
<tr>
<td>more</td>
<td>138</td>
<td>70</td>
<td>9660</td>
</tr>
<tr>
<td>never</td>
<td>124</td>
<td>80</td>
<td>9920</td>
</tr>
<tr>
<td>Oh</td>
<td>116</td>
<td>90</td>
<td>10440</td>
</tr>
<tr>
<td>two</td>
<td>104</td>
<td>100</td>
<td>10400</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Word</th>
<th>Freq. (f)</th>
<th>Rank (r)</th>
<th>$f \cdot r$</th>
</tr>
</thead>
<tbody>
<tr>
<td>turned</td>
<td>51</td>
<td>200</td>
<td>10200</td>
</tr>
<tr>
<td>you’ll</td>
<td>30</td>
<td>300</td>
<td>9000</td>
</tr>
<tr>
<td>name</td>
<td>21</td>
<td>400</td>
<td>8400</td>
</tr>
<tr>
<td>comes</td>
<td>16</td>
<td>500</td>
<td>8000</td>
</tr>
<tr>
<td>group</td>
<td>13</td>
<td>600</td>
<td>7800</td>
</tr>
<tr>
<td>lead</td>
<td>11</td>
<td>700</td>
<td>7700</td>
</tr>
<tr>
<td>friends</td>
<td>10</td>
<td>800</td>
<td>8000</td>
</tr>
<tr>
<td>begin</td>
<td>9</td>
<td>900</td>
<td>8100</td>
</tr>
<tr>
<td>family</td>
<td>8</td>
<td>1000</td>
<td>8000</td>
</tr>
<tr>
<td>brushed</td>
<td>4</td>
<td>2000</td>
<td>8000</td>
</tr>
<tr>
<td>sins</td>
<td>2</td>
<td>3000</td>
<td>6000</td>
</tr>
<tr>
<td>Could</td>
<td>2</td>
<td>4000</td>
<td>8000</td>
</tr>
<tr>
<td>Applausive</td>
<td>1</td>
<td>8000</td>
<td>8000</td>
</tr>
</tbody>
</table>

$f \propto 1/r$ \quad (f \ \text{proportional to} \ 1/r)$
Zipf's Law for the Brown Corpus
Zipf law: interpretation

- Principle of *least effort*: both the speaker and the hearer in communication try to minimize effort:
 - Speakers tend to use a small vocabulary of common (shorter) words
 - Hearers prefer a large vocabulary of rarer less ambiguous words
 - Zipf's law is the result of this compromise

- Other laws …
 - Number of meanings m of a word obeys the law: $m \propto 1/\sqrt{f}$
 - Inverse relationship between frequency and length
Practical Issues

● We do everything in log space
 ▪ Avoid underflow
 ▪ (also adding is faster than multiplying)

\[p_1 \times p_2 \times p_3 \times p_4 = \exp(\log p_1 + \log p_2 + \log p_3 + \log p_4) \]
Language Modeling Toolkits

- SRILM
 http://www.speech.sri.com/projects/srilm/
- IRSTLM
- Ken LM
All Our N-gram are Belong to You
By Peter Norvig - 8/03/2006 11:26:00 AM

Posted by Alex Franz and Thorsten Brants, Google Machine Translation Team

Here at Google Research we have been using word n-gram models for a variety of R&D projects, such as statistical machine translation, speech recognition, spelling correction, entity detection, information extraction, and others. While such models have usually been estimated from training to share this enormous dataset with everyone. We processed 1,024,908,267,229 words of running text and are publishing the counts for all 1,176,470,663 five-word sequences that appear at least 40 times. There are 13,588,391 unique words, after discarding words that appear less than 200 times.
Google Book N-grams

- http://ngrams.googlelabs.com/
serve as the incoming 92
serve as the incubator 99
serve as the independent 794
serve as the index 223
serve as the indication 72
serve as the indicator 120
serve as the indicators 45
serve as the indispensable 111
serve as the indispensible 40
serve as the individual 234

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html
Evaluation and Perplexity
Evaluation

- Train parameters of our model on a **training set**.
- How do we evaluate how well our model works?
- Look at the model's performance on some new data.
- This is what happens in the real world; we want to know how our model performs on data we haven’t seen.
- Use a **test set**. A dataset which is different than our training set.
- Then we need an **evaluation metric** to tell us how well our model is doing on the test set.
- One such metric is **perplexity**.
Evaluating N-gram models

- Best evaluation for an N-gram
 - Put model A in a task (language identification, speech recognizer, machine translation system)
 - Run the task, get an accuracy for A (how many langs identified correctly, or Word Error Rate, or etc)
 - Put model B in task, get accuracy for B
 - Compare accuracy for A and B
 - Extrinsic evaluation
Language Identification task

- Create an N-gram model for each language
- Compute the probability of a given text
 \[P_{\text{lang}_1}(\text{text}) \]
 \[P_{\text{lang}_2}(\text{text}) \]
 \[P_{\text{lang}_3}(\text{text}) \]
- Select language with highest probability
 \[\text{lang} = \arg\max_i P_i(\text{text}) \]
Extrinsic evaluation
 ▪ This is really time-consuming
 ▪ Can take days to run an experiment

So
 ▪ As a temporary solution, in order to run experiments
 ▪ To evaluate N-grams we often use an intrinsic evaluation, an approximation called perplexity
 ▪ But perplexity is a poor approximation unless the test data looks just like the training data
 ▪ So is generally only useful in pilot experiments (generally is not sufficient to publish)
The intuition behind perplexity as a measure is the notion of surprise.

How surprised is the language model when it sees the test set?

- Where surprise is a measure of...
 - Gee, I didn’t see that coming...
- The more surprised the model is, the lower the probability it assigned to the test set
- The higher the probability, the less surprised it was
Perplexity

- Measures of how well a model “fits” the test data.
- Uses the probability that the model assigns to the test corpus.
- Normalizes for the number of words in the test corpus and takes the inverse.

\[PP(W) = \sqrt[n]{\frac{1}{P(w_1, w_2, ..., w_n)}} \]

- Measures the weighted average branching factor in predicting the next word (lower is better).
Perplexity

- **Perplexity:**
 \[
 \text{PP}(W) = P(w_1w_2\ldots w_N)^{-\frac{1}{N}} = \sqrt[N]{\frac{1}{P(w_1w_2\ldots w_N)}}
 \]

- **Chain rule:**
 \[
 \text{PP}(W) = N \sqrt{\prod_{i=1}^{N} \frac{1}{P(w_i|w_1\ldots w_{i-1})}}
 \]

- **For bigrams:**
 \[
 \text{PP}(W) = N \sqrt{\prod_{i=1}^{N} \frac{1}{P(w_i|w_{i-1})}}
 \]

- **Minimizing perplexity is the same as maximizing probability**
 - The best language model is one that best predicts an unseen test set
Perplexity as branching factor

- Let’s suppose a sentence consists of random digits
- How hard is the task of recognizing digits ‘0, 1, 2, 3, 4, 5, 6, 7, 8, 9’
- Perplexity: 10

\[
PP(W) = P(w_1w_2\ldots w_N)^{-\frac{1}{N}} \\
= \left(\frac{1}{10}\right)^N \left(-\frac{1}{N}\right) \\
= \frac{1}{10}^{-1} \\
= \frac{1}{10} \\
= 10
\]
Lower perplexity = better model

- Model trained on 38 million words from the Wall Street Journal (WSJ) using a 19,979 word vocabulary.
- Evaluation on a disjoint set of 1.5 million WSJ words.

<table>
<thead>
<tr>
<th>N-gram Order</th>
<th>Unigram</th>
<th>Bigram</th>
<th>Trigram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perplexity</td>
<td>962</td>
<td>170</td>
<td>109</td>
</tr>
</tbody>
</table>
Unknown Words

- How to handle words in the test corpus that did not occur in the training data, i.e. *out of vocabulary* (OOV) words?
- Train a model that includes an explicit symbol for an unknown word (<UNK>):
 1. Choose a vocabulary in advance and replace other words in the training corpus with <UNK>, or
 2. Replace the first occurrence of each word in the training data with <UNK>.
Unknown Words handling

● Training of <UNK> probabilities
 ▪ Create a fixed lexicon L of size V
 ▪ Any training word not in L changed to <UNK>
 ▪ Now we train its probabilities like a normal word

● At decoding time
 ▪ In text input: use <UNK> probabilities for any word not in training
Smoothing
Advanced LM stuff

- Current best smoothing algorithm
 - Kneser-Ney smoothing

- Other stuff
 - Interpolation
 - Backoff
 - Variable-length n-grams
 - Class-based n-grams
 - Clustering
 - Hand-built classes
 - Cache LMs
 - Topic-based LMs
 - Sentence mixture models
 - Skipping LMs
 - Parser-based LMs
 - Word Embeddings

\[
p_{KN}(w_i | w_{i-1}) = \frac{\max(c(w_{i-1}, w_i) - \delta, 0)}{\sum_{w'} c(w_{i-1}, w')} + \lambda w_{i-1} p_{KN}(w_i)
\]

- how likely it is to see the word \(w_i \) in an unfamiliar context
Backoff and Interpolation

If we are estimating:
- Trigram $P(z|xy)$
- but $C(xyz)$ is zero

Use info from:
- Bigram $P(z|y)$

Or even:
- Unigram $P(z)$

How to combine the trigram/bigram/unigram info?
Backoff versus interpolation

- **Backoff**: use trigram if you have it, otherwise bigram, otherwise unigram
- **Interpolation**: mix all three
Backoff

- Only use lower-order model when data for higher-order model is unavailable
- Recursively back-off to weaker models until data is available

\[
P_{katz}(w_n | w_{n-N+1}^{n-1}) = \begin{cases}
P^*(w_n | w_{n-N+1}^{n-1}) & \text{if } C(w_{n-N+1}^n) > 1 \\
\alpha(w_{n-N+1}^{n-1})P_{katz}(w_n | w_{n-N+1}^{n-2}) & \text{otherwise}
\end{cases}
\]

Where \(P^* \) is a discounted probability estimate to reserve mass for unseen events and \(\alpha \)'s are back-off weights (see book for details).
Interpolation

- Simple interpolation

\[
\hat{P}(w_n|w_{n-1}w_{n-2}) = \lambda_1 P(w_n|w_{n-1}w_{n-2}) \\
+ \lambda_2 P(w_n|w_{n-1}) \\
+ \lambda_3 P(w_n)
\]

\[\sum_i \lambda_i = 1\]

- Lambdas conditional on context:

\[
\hat{P}(w_n|w_{n-2}w_{n-1}) = \lambda_1 (w_{n-2}^{n-1}) P(w_n|w_{n-2}w_{n-1}) \\
+ \lambda_2 (w_{n-2}^{n-1}) P(w_n|w_{n-1}) \\
+ \lambda_3 (w_{n-2}^{n-1}) P(w_n)
\]
How to set the lambdas?

- Use a **held-out** corpus

- Choose lambdas which maximize the probability of *data* i.e. fix the N-gram probabilities then search for lambda values that, when plugged into previous equation, give largest probability for held-out set

 Can use EM (Expectation Maximization) to do this search
Intuition of backoff+discounting

- How much probability to assign to all the zero trigrams?
 - Use Good-Turing or other discounting algorithm
- How to divide that probability mass among different contexts?
 - Use the N-1 gram estimates
- What do we do for the unigram words not seen in training?
 - Out Of Vocabulary = OOV words
Problem for N-Grams: Long Distance Dependencies

- Sometimes local context does not provide enough predictive clues, due to the presence of long-distance dependencies.
 - Syntactic dependencies
 - “The man next to the large oak tree near the grocery store on the corner is tall.”
 - “The men next to the large oak tree near the grocery store on the corner are tall.”
 - Semantic dependencies
 - “The bird next to the large oak tree near the grocery store on the corner flies rapidly.”
 - “The man next to the large oak tree near the grocery store on the corner talks rapidly.”
- More complex models of language are needed to handle such dependencies.
ARPA format

unigram: \(\log p^*(w_i) \quad w_i \quad \log \alpha(w_i) \)

bigram: \(\log p^*(w_i | w_{i-1}) \quad w_{i-1}w_i \quad \log \alpha(w_{i-1}w_i) \)

trigram: \(\log p^*(w_i | w_{i-2}, w_{i-1}) \quad w_{i-2}w_{i-1}w_i \)
\data\ngram 1=1447
ngram 2=9420
ngram 3=5201

\1-grams:
-0.8679678 \(</s>\)
-99 \(<s>\) -1.068532
-4.743076 chow-fun -0.1943932
-4.266155 fries -0.5432462
-3.175167 thursday -0.7510199
-1.776296 want -1.04292
...

\2-grams:
-0.6077676 \(<s>\) i -0.6257131
-0.4861297 i want 0.0425899
-2.832415 to drink -0.06423882
-0.5469525 to eat -0.008193135
-0.09403705 today \(</s>\) ...

\3-grams:
-2.579416 \(<s>\) i prefer
-1.148009 \(<s>\) about fifteen
-0.4120701 to go to
-0.3735807 me a list
-0.260361 at jupiter \(</s>\)
-0.260361 a malaysian restaurant
...
\end\
Language Models

- Language models assign a probability that a sentence is a legal string in a language.
- They are useful as a component of many NLP systems, such as ASR, OCR, and MT.
- Simple N-gram models are easy to train on unsupervised corpora and can provide useful estimates of sentence likelihood.
- MLE gives inaccurate parameters for models trained on sparse data.
- Smoothing techniques adjust parameter estimates to account for unseen (but not impossible) events.
LM Tutorial
Homework

- **Write two programs**
 - train-unigram: Creates a unigram model
 - test-unigram: Reads a unigram model and calculates entropy and coverage for the test set

- **Get data from** https://github.com/neubig/nlptutorial/tree/master/test

- **Test** them test/01-train-input.txt test/01-test-input.txt

- **Train** the model on data/wiki-en-train.word

- **Calculate** entropy and coverage on data/wiki-entest.word

- **Report** your scores next week
Pseudo code: train-unigram

counts = {}

total_count = 0

for line in the training_file:
 words = line.split()
 words.append("<s>")
 for word in words:
 counts[word] += 1
 total_count += 1

open the model_file for writing

for word, count in counts:
 probability = counts[word]/total_count
 print word, probability to model_file
Pseudo-code: test-unigram

Load model

```python
probabilities = {}
for line in model_file:
    w, P = line.split()
    probabilities[w] = P
```

Test and print

```python
W = 0
unk = 0
H = 0
for line in test_file:
    words = line.split()
    words.append("</s>")
    for w in words:
        W += 1
        P = λ_{unk} / V
        if probabilities[w] exists
            P += λ_{1} * probabilities[w]
        else
            unk += 1
            H += -log_2(P)
    print "entropy = " + H/W
    print "coverage = " + (W - unk)/W
```
Summary

● Language Modeling (N-grams)
 ▪ N-grams
 ▪ The Chain Rule
 ▪ The Shannon Visualization Method

● Evaluation:
 ▪ Perplexity

● Smoothing:
 ▪ Laplace (Add-1)
 ▪ Add-k
 ▪ Add-prior