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Probabilistic Language Model
● Goal: assign a probability to a sentence

● Machine Translation:
▪ P(high winds tonite) > P(large winds tonite)

● Spell Correction
▪ “The office is about fifteen minuets from my house"

• P(about fifteen minutes from) > P(about fifteen minuets from)

● Speech Recognition
▪ P(I saw a van) >>  P(eyes awe of an)

● Summarization, question--answering, etc.



Why Language Models
● We have an English speech recognition system, which answer is better?

         Speech Interpretation

speech recognition system

speech cognition system

speck podcast histamine

スピーチ が 救出 ストン

● Language models tell us the answer!



Language Modeling
● We want to compute 

P(w1,w2,w3,w4,w5…wn) = P(W)
= the probability of a sequence

● Alternatively we want to compute 
P(w5|w1,w2,w3,w4)
= the probability of a word given some previous words

● The model that computes 
P(W) or
P(wn|w1,w2…wn-1)

is called the language model.

● A better term for this would be “The Grammar”
● But “Language model” or LM is standard



Computing P(W)

● How to compute this joint probability:

P(“the”, “other”, “day”, “I”, “was”, “walking”,  “along”, “and”, 
“saw”, “a”, “lizard”)

● Intuition: let’s rely on the Chain Rule of Probability



The Chain Rule
● Recall the definition of conditional probabilities

● Rewriting:

● More generally

P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)
● In general 

P(x1,x2,x3,…xn) = P(x1)P(x2|x1)P(x3|x1,x2)…P(xn|x1…xn-1)



The Chain Rule applied to joint probability of words in sentence

P(“the big red dog was”) =
P(the) • P(big|the) • P(red|the big) • P(dog|the big 
red) • P(was|the big red dog)



Obvious estimate
● How to estimate?

P(the | its water is so transparent that)

P(the | its water is so transparent that) =
C(its water is so transparent that the)
____________________________________________________________________________________________

C(its water is so transparent that)



Unfortunately
● There are a lot of possible sentences

● We will never be able to get enough data to compute the statistics for 
those long prefixes

P(lizard|the,other,day,I,was,walking,along,and,saw,a)
or

P(the|its water is so transparent that)



Markov Assumption
● Make the simplifying assumption

P(lizard|the,other,day,I,was,walking,along,and,saw,a) = P(lizard|a)
● or maybe

P(lizard|the,other,day,I,was,walking,along,and,saw,a) = P(lizard|saw,a)



• So for each component in the product, replace with the 
approximation (assuming a prefix of N)

•  Bigram model

Markov Assumption



N-gram models
● We can extend to trigrams, 4--grams, 5--grams

● In general this is an insufficient model of language
▪ because language has long--distance dependencies:

▪ “The computer which I had just put into the machine room on the fifth floor 
crashed.”

● But we can often get away with N--gram models



Estimating bigram probabilities
The Maximum Likelihood Estimate



An example
<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

This is the Maximum Likelihood Estimate, because it is the one which 
maximizes P(Training set|Model)



Maximum Likelihood Estimates
● The Maximum Likelihood Estimate of some parameter of a model M 

from a training set T
▪ is the estimate that

▪ maximizes the likelihood of the training set T given the model M

● Suppose the word “Chinese” occurs 400 times in a corpus of a million 
words (e.g. the Brown corpus)

● What is the probability that a random word from some other text will be 
“Chinese”

● MLE estimate is 400/1000000 = .004
▪ This may be a bad estimate for some other corpus

● But it is the estimate that makes it most likely that “Chinese” will occur 
400 times in a million word corpus.



The maximum likelihood 
method (discrete distribution):
 

1. Write down the probability of 
each observation by using the 
model parameters

2. Write down the probability of 
all the data

3. Find the value parameter(s) 
that maximize this probability

Maximum Likelihood
We want to estimate the probability, p, that individuals are 
infected with a certain kind of parasite.

Ind. Infected Probability of 
observation

1 1 p
2 0 1 – p
3 1 p
4 1 p
5 0 1 – p
6 1 p
7 1 p
8 0 1 – p
9 0 1 – p

10 1 p



Likelihood function:

- Find the value parameter(s) that 
maximize this probability

Maximum likelihood
We want to estimate the probability, p, that individuals are 
infected with a certain kind of parasite.

Ind. Infected Probability of 
observation

1 1 p
2 0 1 – p
3 1 p
4 1 p
5 0 1 – p
6 1 p
7 1 p
8 0 1 – p
9 0 1 – p

10 1 p



Computing the MLE
● Set the derivative to 0:

● Solutions:
▪ p = 0 (minimum)
▪ p = 1 (minimum)
▪ p = 0.6 (maximum)



More examples: Berkeley Restaurant Project

can you tell me about any good cantonese restaurants close by

mid priced thai food is what i’m looking for

tell me about chez panisse

can you give me a listing of the kinds of food that are available

i’m looking for a good place to eat breakfast

when is caffe venezia open during the day



Raw bigram counts
Out of 9222 sentences



Raw bigram probabilities
Normalize by unigrams (divide by C(w-1)):

Result:



Bigram estimates of sentence probabilities
P(<s> I want english food </s>) =

P(i|<s>)  x 
 P(want|I)  x 

P(english|want) x   
P(food|english)  x  
P(</s>|food)

  =.000031



What kinds of knowledge?
P(english|want)  = .0011
P(chinese|want) =  .0065
P(to|want) = .66
P(eat | to) = .28
P(food | to) = 0
P(want | spend) = 0
P(i | <s>) = .25



Practical Issues
● Compute in log space

▪ Avoid underflow

▪ Adding is faster than multiplying

log(p1 • p2 • p3 • p4) = log(p1) + log(p2) + log(p3) + log(p4)



Shannon’s Game
● What if we turn these models around and use 

them to generate random sentences that are 
like the sentences from which the model was 
derived.

Jim Martin       



The Shannon Visualization Method
● Generate random sentences:

● Choose a random bigram <s>, w according to its probability

● Now choose a random bigram (w, x) according to its probability

● And so on until we choose </s>

● Then string the words together
<s> I

           I want
             want to
                       to eat
                     eat Chinese

           Chinese food
                           food  </s>



Approximating Shakespeare



Shakespeare as corpus
● N=884,647 tokens, V=29,066

● Shakespeare produced 300,000 bigram types out of 
V2= 844 million possible bigrams:  so, 99.96% of the 
possible bigrams were never seen (have zero entries in 
the table)

● Quadrigrams:
▪ What's coming out looks like Shakespeare because it is 

Shakespeare



The Wall Street Journal is not Shakespeare (no offense)



Lesson 1: the perils of overfitting
● N-grams only work well for word prediction if the test corpus looks like 

the training corpus

▪ In real life, it often doesn’t

▪ We need to train robust models, adapt to test set, etc.



Train and Test Corpora

● A language model must be trained on a large corpus of text to estimate 
good parameter values.

● Model can be evaluated based on its ability to predict a high probability 
for a disjoint (held-out) test corpus (testing on the training corpus 
would give an optimistically biased estimate).

● Ideally, the training (and test) corpus should be representative of the 
actual application data.

● May need to adapt a general model to a small amount of new 
(in-domain) data by adding highly weighted small corpus to original 
training data.



Smoothing



Smoothing
● Since there are a combinatorial number of possible word 

sequences, many rare (but not impossible) combinations 
never occur in training, so MLE incorrectly assigns zero to 
many parameters (aka sparse data).

● If a new combination occurs during testing, it is given a 
probability of zero and the entire sequence gets a 
probability of zero (i.e. infinite perplexity).

● In practice, parameters are smoothed (aka regularized) to 
reassign some probability mass to unseen events.
▪ Adding probability mass to unseen events requires removing it from 

seen ones (discounting) in order to maintain a joint distribution that 
sums to 1.



Smoothing is like Robin Hood:
Steal from the rich and give to the poor (in probability mass)

Slide from Dan Klein

● When we have sparse statistics:
P(w | denied the)
  3 allegations
  2 reports
  1 claims
  1 request

  7 total
● Steal probability mass to generalize better

P(w | denied the)
  2.5 allegations
  1.5 reports
  0.5 claims
  0.5 request
  2 other

  7 total



Laplace smoothing
● Also called add-one smoothing

● Just add one to all the counts!

● Very simple

● MLE estimate:

● Laplace estimate:

● Reconstructed counts:



Laplace smoothed bigram counts
Berkeley Restaurant Corpus



Laplace-smoothed bigrams



Reconstituted counts



Note big change to counts
● C(want to) went from 608 to 238!

● P(to|want) from 0.66 to 0.26!

● Discount d = c*/c
▪ d for “chinese food” = 0.10 A 10x reduction!

▪ So in general, Laplace is a blunt instrument

● But Laplace smoothing not used for N-grams, as we have much better 
methods

● Despite its flaws Laplace (add-k) is however still used to smooth other 
probabilistic models in NLP, especially
▪ For pilot studies

▪ in domains where the number of zeros isn’t so huge.



Add-k
● Add a small fraction instead of 1

● k = 0.01



Even better: Bayesian unigram prior smoothing for bigrams

● Maximum Likelihood Estimation

● Laplace Smoothing

● Bayesian Prior Smoothing



Lesson 2: zeros or not?
● Zipf’s Law:

▪ A small number of events occur with high frequency
▪ A large number of events occur with low frequency
▪ You can quickly collect statistics on the high frequency events
▪ You might have to wait an arbitrarily long time to get valid statistics on low 

frequency events

● Result:
▪ Our estimates are sparse! no counts at all for the vast bulk of things we want to 

estimate!
▪ Some of the zeroes in the table are really zeros  But others are simply low frequency 

events you haven't seen yet.  After all, ANYTHING CAN HAPPEN!
▪ How to address?

● Answer:
▪ Estimate the likelihood of unseen N-grams!

Slide from B. Dorr and J. Hirschberg



Zipf's law 

   
   f ∝ 1/r         (f proportional to 1/r)
   there is a constant k such that
   f . r = k



Zipf's Law for the Brown Corpus 



Zipf law: interpretation
▪ Principle of least effort: both the speaker and the hearer in 

communication try to minimize effort:
▪ Speakers tend to use a small vocabulary of common (shorter) words

▪ Hearers prefer a large vocabulary of rarer less ambiguous words

▪ Zipf's law is the result of this compromise

▪ Other laws …
▪ Number of meanings m of a word obeys the law: m ∝ 1/√f
▪ Inverse relationship between frequency and length



Practical Issues
● We do everything in log space

▪Avoid underflow

▪ (also adding is faster than multiplying)



Language Modeling Toolkits
● SRILM

http://www.speech.sri.com/projects/srilm/

● IRSTLM

● Ken LM



Google N-Gram Release



Google Book N-grams
● http://ngrams.googlelabs.com/



Google N-Gram Release
serve as the incoming 92
serve as the incubator 99
serve as the independent 794
serve as the index 223
serve as the indication 72
serve as the indicator 120
serve as the indicators 45
serve as the indispensable 111
serve as the indispensible 40
serve as the individual 234

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html



Evaluation and Perplexity



Evaluation
● Train parameters of our model on a training set.
● How do we evaluate how well our model works?
● Look at the models performance on some new data
● This is what happens in the real world; we want to know how our model 

performs on data we haven’t seen
● Use a test set. A dataset which is different than our training set
● Then we need an evaluation metric to tell us how well our model is 

doing on the test set.
● One such metric is perplexity



Evaluating N-gram models

● Best evaluation for an N-gram
▪ Put model A in a task (language identification, 

speech recognizer, machine translation system)
▪ Run the task, get an accuracy for A (how many langs 

identified correctly, or Word Error Rate, or etc)
▪ Put model B in task, get accuracy for B
▪ Compare accuracy for A and B
▪ Extrinsic evaluation



Language Identification task
● Create an N-gram model for each language

● Compute the probability of a given text
Plang1(text)
Plang2(text)
Plang3(text)

● Select language with highest probability
lang = argmaxl Pl(text)



Difficulty of extrinsic (in-vivo) evaluation of N-gram models

● Extrinsic evaluation
▪ This is really time-consuming
▪ Can take days to run an experiment

● So
▪ As a temporary solution, in order to run experiments
▪ To evaluate N-grams we often use an intrinsic evaluation, an 

approximation called perplexity
▪ But perplexity is a poor approximation unless the test data looks 

just like the training data
▪ So is generally only useful in pilot experiments (generally is not 

sufficient to publish)



Perplexity
● The intuition behind perplexity as a measure is the 

notion of surprise.

● How surprised is the language model when it sees the 
test set?
▪ Where surprise is a measure of...

• Gee, I didn’t see that coming...

▪ The more surprised the model is, the lower the probability it 
assigned to the test set

▪ The higher the probability, the less surprised it was



Perplexity
● Measures of how well a model “fits” the test data.
● Uses the probability that the model assigns to the test corpus.
● Normalizes for the number of words in the test corpus and 

takes the inverse.

● Measures the weighted average branching factor in predicting 
the next word (lower is better).



Perplexity
● Perplexity:

● Chain rule:

● For bigrams:

● Minimizing perplexity is the same as maximizing probability
• The best language model is one that best predicts an unseen test set



Perplexity as branching factor
● Let’s suppose a sentence consists of random digits
● How hard is the task of recognizing digits ‘0, 1, 2, 3, 4, 5, 6, 7, 8, 9’

● Perplexity: 10



Lower perplexity = better model
● Model trained on 38 million words from the Wall 

Street Journal (WSJ) using a 19,979 word vocabulary.

● Evaluation on a disjoint set of 1.5 million WSJ words.

N-gram Order Unigram Bigram Trigram

Perplexity 962 170 109



Unknown Words
● How to handle words in the test corpus that did 

not occur in the training data, i.e. out of 
vocabulary (OOV) words?

● Train a model that includes an explicit symbol for 
an unknown word (<UNK>):
1. Choose a vocabulary in advance and replace other 

words in the training corpus with <UNK>, or
2. Replace the first occurrence of each word in the 

training data with <UNK>.



Unknown Words handling

● Training of <UNK> probabilities
▪ Create a fixed lexicon L of size V
▪ Any training word not in L changed to  <UNK>
▪ Now we train its probabilities like a normal word

● At decoding time
▪ In text input: use <UNK> probabilities for any word not in 

training



Smoothing



Advanced LM stuff
● Current best smoothing algorithm

▪ Kneser-Ney smoothing

● Other stuff
▪ Interpolation
▪ Backoff
▪ Variable-length n-grams
▪ Class-based n-grams

• Clustering
• Hand-built classes

▪ Cache LMs
▪ Topic-based LMs
▪ Sentence mixture models
▪ Skipping LMs
▪ Parser-based LMs
▪ Word Embeddings

how likely it is to see the word wi 
in an unfamiliar context

discount



Backoff and Interpolation
If we are estimating:
▪ Trigram P(z|xy) 
▪ but C(xyz) is zero

Use info from:
▪ Bigram P(z|y)

Or even:
▪ Unigram P(z)

How to combine the trigram/bigram/unigram info?



Backoff versus interpolation
● Backoff: use trigram if you have it, otherwise bigram, 

otherwise unigram

● Interpolation: mix all three



Backoff

● Only use lower-order model when data for higher-order 
model is unavailable

● Recursively back-off to weaker models until data is 
available

Where P* is a discounted probability estimate to 
reserve mass for unseen events and α’s are back-off 
weights (see book for details).



Interpolation
● Simple interpolation

● Lambdas conditional on context:



How to set the lambdas?
● Use a held-out corpus

● Choose lambdas which maximize the probability of  data
i.e. fix the N-gram probabilities
then search for lambda values that,
when plugged into previous equation,
give largest probability for held-out set
Can use EM (Expectation Maximization) to do this search

Training Data Held-Out Data Test 
Data



Intuition of backoff+discounting
● How much probability to assign to all the zero trigrams?

▪ Use Good-Turing or other discounting algorithm

● How to divide that probability mass among different contexts?
▪ Use the N-1 gram estimates

● What do we do for the unigram words not seen in training?
▪ Out Of Vocabulary = OOV words



Problem for N-Grams: Long Distance Dependencies
● Sometimes local context does not provide enough predictive 

clues, due to the presence of long-distance dependencies.
▪ Syntactic dependencies

• “The man next to the large oak tree near the grocery store on the 
corner is tall.”

• “The men next to the large oak tree near the grocery store on the 
corner are tall.”

▪ Semantic dependencies
• “The bird next to the large oak tree near the grocery store on the 

corner flies rapidly.”
• “The man next to the large oak tree near the grocery store on the 

corner talks rapidly.”

● More complex models of language are needed to handle such 
dependencies.



ARPA format





Language Models
● Language models assign a probability that a sentence is a legal string 

in a language.
● They are useful as a component of many NLP systems, such as ASR, 

OCR, and MT.
● Simple N-gram models are easy to train on unsupervised corpora 

and can provide useful estimates of sentence likelihood.
● MLE gives inaccurate parameters for models trained on sparse data.
● Smoothing techniques adjust parameter estimates to account for 

unseen (but not impossible) events.



LM Tutorial



Homework
● Write two programs

▪ train-unigram: Creates a unigram model

▪ test-unigram: Reads a unigram model and calculates entropy and coverage for the 
test set

● Get data from https://github.com/neubig/nlptutorial/tree/master/test

● Test them test/01-train-input.txt test/01-test-input.txt

● Train the model on data/wiki-en-train.word

● Calculate entropy and coverage on data/wiki-entest.word

● Report your scores next week



Pseudo code: train-unigram
counts  = {}

total_count = 0

for line in the training_file:

    words = line.split()

    words.append(“</s>”)

    for word in words:

        counts[word] += 1

        total_count += 1

open the model_file for writing

for word, count in counts:

    probability = counts[word]/total_count

    print word, probability to model_file



Pseudo-code: test-unigram
Load model
probabilities = {}

for line in model_file:

    w, P = line.split()

    probabilities[w] = P

Test and print
W = 0
unk = 0
H = 0
for line in test_file:
    words = line.split()
    words.append(“</s>”)
    for w in words:
        W += 1
        P = λ

unk
 / V

        if probabilities[w] exists
            P += λ

1
 * probabilities[w]

        else
            unk += 1
            H += -log

2
(P)

print “entropy = ” + H/W
print “coverage = ” + (W - unk)/W



Summary
● Language Modeling (N-grams)
▪ N-grams
▪ The Chain Rule
▪ The Shannon Visualization Method

● Evaluation:
▪ Perplexity

● Smoothing: 
▪ Laplace (Add-1)

▪ Add-k

▪ Add-prior


