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Designing experiments



Experiments
Experiments in a controlled environment are a good tool to predict the 
effectiveness of a method and to compare competing ideas.

In text analytics the controlled environment is usually defined by one or more 
annotated corpora that model the task of interest.

Data in a corpora can be exploited in many ways in order to perform an 
experiment, following different experimental protocols.

The most used protocol, and the basic element of many others, is the one 
based one train and test.

Every protocol has pros and cons with respect to computational cost, 
reproducibility, and statistical relevance of results.



Training & Test
The train and test protocol splits the dataset in two parts:

● A training set, which is the actual data on which the ML algorithm is 
trained to produce a model.

● A test set, which is the data on which the model is evaluated.

Information from test set must be NEVER used to train the model or in any 
decision regarding the definition of the training process

otherwise we break the possibility to consider the results obtained on test 
set  to be a good representative of the results obtainable on any data. 

The train and test protocol is the basic element used in many other protocols, 
to perform experiments and also optimization in the training phase.



Optimization of parameters
A ML pipeline may have many parameters that must be set and that can have 
an impact on the quality of results:

● Which features to extract?

● What lexicons to use, how?

● Use of tagging, parsing. How to use it?

● Feature selection: measures and amount

● Weighting functions

● Learner and its parameters



Optimization of parameters
Which is the optimal choice for a specific task?

We cannot test all the possibilities on test set, as this would mean fitting the 
method on test data, i.e.:

● cheating with respect of any method that has not been optimized on test 
set

● weakening the generalizability of the result to unseen data

Any decision regarding the method we are working on must not be based 
on test data.



Optimization of parameters
Optimization of parameters can be done using only the training data, by 
considering the training set as a smaller dataset on which we can use the 
results on the test part (typically called validation set) to choose the best 
parameters.

Once the best parameters are identified, the whole training set is used to fit a 
new model using such best parameters, and then the model is evaluated on 
test data.

Similarly to main experiments, also experiments for the optimization of 
parameters can use any protocol.



Experimental protocols



Train and test
Data is split once and for all in a single training set and a single test set.
E.g.: Reuters21578, RCV1 v2, IMDB dataset.

Pros:
● easy to reproduce
● reasonable to do on time-related data (training data comes before test 

data)
● experiments are quick to run

Cons:
● risk of overfitting validation data on the long run
● risk of low statistical relevance (test set must be large)

https://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
https://scikit-learn.org/0.18/datasets/rcv1.html
https://ai.stanford.edu/~amaas/data/sentiment/


K-fold validation
In k-fold validation, data is split in k equal sized 
sets. For k times, k-1 sets are used as the training 
set and the remaining one as the set set.
E.g., 20 newsgroups, ANY dataset.

Pros:
● improved statistical relevance (the whole 

dataset is a test set)

Cons
● reproducible by knowing how splits are made
● must check fold composition
● cost of experiment grows linearly with k

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html


Stratification
Many text classification problems are highly 
unbalanced, i.e., very few positive examples exists for a 
label.

In such cases there is the risk that a k-fold protocol, or 
any protocol that samples the training set, may create 
train-test splits in which all positive example are in the 
test set, making that split almost useless for actual 
evaluation.

Stratified versions of protocols take care to keep the 
ratio of positive examples constant across splits, avoiding 
this issue.

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html#sklearn.model_selection.StratifiedKFold


Leave-one-out validation
Leave-one-out validation is an extreme setup of k-fold validation in which k is 
set to be equal to the dataset size. Test set for each fold is just one document.

Pros:

● really easy to reproduce
● good statistical relevance

Cons:

● very high cost

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeaveOneOut.html


Random sampling
With random sampling a split proportion is determined, e.g., 80%/20%. For an 
arbitrary number of times a random train/test split is created and the  
accuracy measures are recorded.

Pros:
● high statistical relevance
● cost is flexible, can run it until you have 

resources

Cons:
● hard to reproduce exactly
● requires statistical analysis to put results 

together

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.ShuffleSplit.html


Evaluation



Evaluation
The learned classifier Ŷ is applied to unlabeled documents. 

Labels are in fact known, but kept hidden to the classifier (test set).

Predicted labels are compared to true labels from test set, building a 
contingency table:



Evaluation
Predicted labels are compared to true labels from test set, building a 
contingency table:

● TP = true positive, document correctly labeled with the category label 
● FP = false positive, document wrongly labeled with the category label 
● FN = false negative, document wrongly not labeled with the category label 
● TN = true negative, document correctly not labeled with the category label 



Evaluation

Various measures can be used to evaluate the classifier: 

● Accuracy

Accuracy is not fair on unbalanced sets: if only 1% of test documents belong 
to the category, then saying always “no” yields a 99% accuracy.



Evaluation

● Recall, ability to find positive items

● Precision, accuracy on positive labels

100% Recall can be achieved by saying always "yes".

● In that case precision will be P/(P+N).



Evaluation
By combining precision and recall we can obtain a measure that cannot be 
cheated using trivial classifiers:

● F1 is the harmonic mean of precision and recall

Metrics in SciKit-Learn

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics


Parameter optimization



Tips on optimization
Optimization is made against a specific evaluation measure.

A grid search on all the candidate values of all the parameters can produce an 
explosion in combinations.

For example:

● 5 feature types, testing each feature independently, all together, and all 
possible pairs.

● 5 feature selection levels

● 10 values for the C parameter of SVM

produce a total of (5single + 1all + 10pairs) · 5 · 10 = 800 configurations to be 
tested



Tips on optimization
Parameters with loose correlation can be optimized in sequence.

● First optimize feature selection amount then optimize C value for SVM

Parameters with lots of possible values can be optimized in two step: coarse 
search, and refinement.

kNN ∈ {1, 5, 10, 15, 20, 25, 30, 35, 40} → {6, 7, 8, 9, 11, 12, 13, 14}

For some numeric parameters a logarithmic search scale is fine.

CSVM ∈ {0.001, 0.01, 0.1, 1, 10, 100, 1000}



Random-sampling for optimization
Once a grid of configuration for experiments is defined,

● all the experiments can be run exhaustively, or... 

● configurations are randomly sampled 
from the grid, and the relative 
experiment is executed, until a given 
experiment budget is consumed.

Sklearn has implementations of both 
methods.

http://scikit-learn.org/stable/modules/grid_search.html
http://scikit-learn.org/stable/modules/grid_search.html


Optimization-overfitting-generalization
Optimizing too many parameters on the same validation set may lead to 
overfitting on that validation set.

Methods to avoid overfitting typically aim at building more general methods.

Yet, too general models can fail to capture key aspect of a problem.

There is no objective/quantitative way to tell when the right 
overfitting/generalization trade-off is reached in machine learning.

The most solid, yet obvious, heuristic we can rely on is that more supervised 
information we have the better models we can expect to obtain.



Optimization-overfitting of Neural Networks
When training a neural network:

● decrease in training loss is the main
 indicator of the effectiveness of the
 learning process, yet...

● ...overfitting may occur: a validation
 set should be tested periodically in 
order to guess when it happens.

Most DL package implement tools and policies to control the learning process 
with respect to the performance on a validation set.

https://mlexplained.com/2018/04/24/overfitting-isnt-simple-overfitting-re-explained-with-priors-biases-and-no-free-lunch/
https://keras.io/api/callbacks/early_stopping/


Beware of Machine Learning Gremlins!

http://www.youtube.com/watch?v=tleeC-KlsKA

