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Text indexing
The term Indexing usually identifies the 
process that transforms plain text into a 
representation that is better manageable by 
algorithms.

The actual implementation of the indexing 
process depends on the actual algorithm that 
will use the indexed output.

E.g., in web search, the main purpose of 
indexing is to identify the words the text is 
composed of so as to populate an inverted 
index for efficient retrieval.

Documents:
d1 = a d c g d e
d2 = c b d a c d 
d3 = e f c b d
d4 = e c a g e a
d5 = f g c b

Inverted index:
La -> d1 d2 d4
Lb -> d2 d3 d5
Lc -> d1 d2 d3 d4 d5
Ld -> d1 d3 
Le -> d1 d3 d4
Lf -> d3 d5

Queries:
a AND d = intersect(La,Ld) = d1
b OR e = union(Lb,Le) = d1 d2 d3 d4 d5



Text indexing
Most machine learning algorithms cannot directly use plain text as input, as 
they are designed to work with different representations of input information, 
e.g., probability distribution, vectors, sequences of words (plain text is a 
sequence of characters, more on this in the following).

The indexing process is in charge to recognize and transform any relevant 
information contained in text in the format suitable for the specific algorithm 
that will be used.

Indexing is not just a mechanical transformation, it is a knowledge 
engineering task, in which the expert may use and combine many tools (from 
IR, NLP, and ML itself) to produce the best possible input data for the 
successive elaboration steps.



Strings



Text representation
How do computers “see” text?

A piece of text is stored in a string, i.e., a sequence of characters:

In : text = 'piece of text'

In : text

Out: 'piece of text'

In : text [0]

Out: 'p'

In : text [0:3]

Out: 'pie'

In : len(text)

Out: 13



Strings
A string is an immutable ordered sequence of Unicode characters.

A string is defined by either using single quotes or double quotes.

a = 'this is a test' # or "this is a test"

Triple double quotes define multiline strings.

a = """This is a

multiline string"""

Out: 'This is a\nmultiline string'

Escape sequences allows to put quotes, newlines, tabs, or other non-trivial 
chars in strings.

https://docs.python.org/3/reference/lexical_analysis.html#string-and-bytes-literals


Encodings
Unicode is a standard (dating back to 
1988) for the consistent encoding, 
representation, and handling of text 
expressed in most of the world's writing 
systems.

UTF-8 is the most common format 
adopted for the encoding of unicode 
characters.

UTF-8 is backward compatible with 
ASCII.

https://commons.wikimedia.org/w/index.php?curid=35027551
https://w3techs.com/technologies/history_overview/character_encoding/ms/y


String operations
Strings offer a number of text-oriented operations.

capitalize, encode, format, isalpha, islower, istitle, lower, 

replace, rpartition, splitlines, title, casefold, endswith, 

format_map, isdecimal, isnumeric, isupper, lstrip, rfind, rsplit, 

startswith, translate, center, expandtabs, index, isdigit, 

isprintable, join, maketrans, rindex, rstrip, strip, upper, count, 

find, isalnum, isidentifier, isspace, ljust, partition, rjust, 

split , swapcase, zfill

https://docs.python.org/3/library/stdtypes.html#string-methods


From text to features
Any observable information from text defines a feature.

The expert models some heuristics that are deemed to be relevant for the 
task of turning text into features (feature engineering process), e.g.:

● The actual words from text
● Linguistic information

○ Morphology (repeated characters: good, goooooood, capitalization: great, 
Great, GREAT, GrEaT)

○ Part of speech (nouns, verbs, adjectives)

○ Parse tree (subjects, objects)

○ Entities (from NER or from lexica)

● Meta information
○ Position in the document, enclosing tag… 

The ML model will determine which are the relevant ones for the task.



Text representation
Strings do not model the concept of word.

In : text[2:7]

Out: 'ece o'

A simple way to get a list of words (tokens) from text is to split them on 
spaces:
In : words = text.split(' ')

In : words

Out: ['piece', 'of', 'text']

In : words[0]

Out: 'piece'

How to deal with punctuation, numbers, links, emails, HTML tags, hashtags, 
mentions, and the like?



Regular expressions



Regular expressions
A regular expression is a search pattern.

Regular expressions are used to find matching patterns in text and to extract 
relevant substrings from text.

The re module defines objects and methods to apply regular expressions to 
strings.

Regular expressions are defined as strings that follow a specific syntax.

'[A-Z][a-z]{3}' = match a sequence of any capital letter followed 
by exactly three lower-case letters, e.g., 'Pisa'

https://docs.python.org/3/library/re.html


Regular expressions
Basic matching

'a' = character a
'abc' =  string abc
'a|b' = match a or b
'a*' = zero or more a
'a+' = one or more a
'a?' = zero or one a
'a{3}' = exactly 3 a
'a{2,5}' = from 2 to 5 a (the more the better)
'a{2,5}?' = from 2 to 5 a (the less the better)
'a{4,}' = at least 4 a
'a{,3}' = at most 3 a



Regular expressions
Other common matches

^ = start of string
$ = end of string
\n = newline
\r = carriage return
\t = tab



Regular expressions
Characters classes

[abc] = one in set a,b,c
[a-z0-9] = one in set of character from a to z and from 0 to 9
[^a-z] = one character but not those from a to z
\d = one digit character
\D = one non-digit character
\s = one white space character
\S = one non white space character
\w = one word character (e.g. a-z A-Z 0-9 _ )
\W = one non-word character
. = any character



Regular expressions
Match a specific string : 'word'

Match any four characters word: '[a−z]{4}'

Match any sequence of digits : '[0−9]+'

Match any email address: '([ˆ@\s]+@[ˆ@\s]+\.[ˆ@\s]+)'



Regular expressions
Groups allow to identify parts of a regular expression that are of interest.

'(abc)' = group,  sequence of characters abc
'(abc)+' = one or more time the sequence
'(?P<name>...)' = group named "name"
'(?P=name)' = match the content of the group with that name
'(?:...)' = non capturing (just to define a sequence)
'(?!abc)' = 'abc' must NOT be present in the string (in the position 

    where this pattern appears).

Start exploring regular expressions here, here, and here.

https://regexone.com/
https://regexone.com/references/python
https://pythex.org/


Regular expressions
Compilation allows efficient reuse of regular expressions, and a clean 
separation between their definition and their use.

tagre = re.compile('<(?P<tag>.+)>(?P<text>.*?)</(?P=tag)>')

tagged = tagre.match('<pre>Ciao</pre>')

tagged['tag']

Out: 'pre'

tagged['text']

Out: 'Ciao'



Recognition of special entities
Different entities can be recognized using different regular expressions:

mentionre = re.compile(r'@[\w]+')

hashtagre = re.compile(r'#[\w]+')

urlre = re.compile(r'https?://[^\s"]+')

emoticonre = re.compile(r'[:;=8]-?[)(/O*\P]')



When to use/not use regular expressions?
Regular expressions are a powerful tool, yet they should be used only for 
low-level matching tasks (e.g. specifically formatted labels and codes), and not 
be used when the desired match is defined by a high-level concept and when 
dedicated tools are available, e.g.:

● Parse HTML/XML with a proper parser (e.g., beautiful soup)

● Tokenize text with a proper tokenization model

● Recognize entities with a trained NER model



Text from the Web



Getting text from the Web
The urllib package implements methods that enable low level interaction with 
Web servers.

Getting any Web page content is typically simple:

from urllib import request

url = "http://www.esuli.it/"

response = request.urlopen(url)

html = response.read().decode('utf8')

html

Out: '<!doctype html>\n\n<head>\n    <meta charset="utf-8">\n    

<title>esuli.it</title>\n    <meta name="description"… '

https://docs.python.org/3/library/urllib.html
http://www.esuli.it/


Extracting (clean) text from the Web
The BeautifulSoup package implements methods to navigate, modify, and 
extract data from HTML and XML data.

It can be used on Web pages to extract information of interest.

from urllib import request

url = "http://www.esuli.it"

response = request.urlopen(url)

html = response.read().decode('utf8')

from bs4 import BeautifulSoup

soup = BeautifulSoup(html, "html5lib")

soup.get_text() ← simple way or ↓ more control

[''.join(s.findAll(text=True))for s in soup.findAll('p')]

https://www.crummy.com/software/BeautifulSoup/
http://www.esuli.it


NLTK



NLTK
NLTK is an open source library that support quick development of NLP 
applications.

NLTK comes with an online book that has guided examples for many tasks.

Typical installation steps:

>conda install nltk

>python

In : import nltk

In : nltk.download()

(pick option to download popular packages)

https://www.nltk.org/
https://www.nltk.org/book/


Tokens & Sentences



Tokenization
One of the basic operation on text is to identify the words (tokens) composing 
it.

NLTK provides a basic function to perform a language aware tokenization.

> from nltk import word_tokenize

> tokens = word_tokenize(text)

> tokens[1000:1050]

Out: ['with', 'you', 'and', 'you', 'are', 'no', 'longer', 'my', 

'friend', ',', 'no', 'longer', 'my', '‘', 'faithful', 'slave', 

',', '’', 'as', 'you', 'call', 'yourself',… ]



Sentence splitting
Splitting a text into its sentences is not always a trivial task.

Use of punctuation is the most relevant clue, yet its use to report other 
information (acronyms, numbers, initials…) can produce erroneous splits.

I'll take the 8.30 train to St. Louis... or maybe I'll stay in LA. Time will tell!

Which of the above dots separate sentences?

The sent_tokenize function implements a language-aware sentence splitter.



Tokenization
The NLTK tokenize package implements tokenizers and splitters for a number 
of different cases:

● twitter text (very informal text, and platform specific style)

● multi-word expressions (providing a list of MWE in input)

● based on regular expressions

● based on Stanford CoreNLP tool

● other dataset-specific tokenizers

http://www.nltk.org/api/nltk.tokenize.html
https://stanfordnlp.github.io/CoreNLP/


Some basic explorations
Given a tokenized text, we may want to extract some information out of it:

● build a vocabulary of the terms used in it

● count frequency of use of each term

● plot the distribution of frequencies across terms.

● see where terms appear across the text

● see in which contexts terms are used

The Text and FreqDist objects from NLTK are two simple tools to perform this 
tasks.

https://kite.com/docs/python;nltk.text.Text
https://kite.com/docs/python;nltk.probability.FreqDist


POS tagging



POS tagging
POS tagging is the process of assigning each term in text to its Part Of Speech.

POS identify large classes of terms with similar syntactic roles in language: 
noun, verb, adjective, adverb, pronoun, preposition, conjunction, interjection, 
numeral, determiner.

POS tagging can also identify more precise syntactic classes, such as common 
names, proper names, the mode of verbs.

NLTK's pos_tag function implements a POS tagger for English and Russian.

RDRPOSTagger provides pretrained POS tagging model for 40+ languages.

https://github.com/datquocnguyen/RDRPOSTagger


POS tagging
Marking tokens with their part of speech (PoS) can reduce ambiguity.

'I saw
1
 a bird'   

'Can you lend me a saw
2
?'

semantic(saw
1
) != semantic(saw

2
)



POS tagging
Marking tokens with their part of speech (PoS) can reduce ambiguity.

In : import nltk

In : text1 = 'I saw a bird.'

In : text2 = 'Can you lend me a saw?'

In : token1 = nltk.word_tokenize(text1)

In : token2 = nltk.word_tokenize(text2)

In : token1, token2

Out: (['I', 'saw', 'a', 'bird', '.'], ['Can', 'you', 'lend', 'me', 'a', 'saw', '?'])

In : nltk.pos_tag(token1), nltk.pos_tag(token2)

Out: [('I', 'PRP'), ('saw', 'VBD'), ('a', 'DT'), ('bird', 'NN'), ('.', '.')]

Out: [('Can', 'MD'), ('you', 'PRP'), ('lend', 'VB'), ('me', 'PRP'), ('a', 'DT'), 

('saw', 'NN'), ('?', '.') ]



Stems & Lemmas



Stemming and lemmatization
Stemming and lemmatization aim at reducing the different inflections of a 
words to its root.

Stemming does it by applying a set of language-dependent word 
transformation rules, which can result in a lexically incorrect or 
non-meaningful word.

Lemmatization use a deeper, and costlier, NLP 
analysis to reduce a word to its dictionary form.

https://en.wikipedia.org/wiki/Stemming
http://www.nltk.org/api/nltk.stem.html
https://en.wikipedia.org/wiki/Lemmatisation


Stemming and lemmatization
Stemming:

In : from nltk.stem.porter import PorterStemmer

In : stemmer = PorterStemmer()

In : stemmer.stem('cars')

Out: 'car'

In : stemmer.stem('was')

Out: 'wa'



Stemming and lemmatization
Lemmatization:

In : from nltk.stem.wordnet import WordNetLemmatizer

In : lmtzr = WordNetLemmatizer()

In : lmtzr.lemmatize('cars')

Out: 'car'

In : lmtzr.lemmatize('was') # needs POS

Out: 'wa'

In : lmtzr.lemmatize('was', pos='v')

Out: 'be'



Bag of Words



From list of words…
Features are extracted from text in a list, possibly with repetitions.

In : text = 'the president of the united states of america'

In : feats = word_tokenize(text)

In : len( feats )

Out: 8

In : feats

Out: ['the', 'president', 'of', 'the', 'united', 'states', 'of', 

'america']

Representing text with that list of variable length can be a problem for many 
ML algorithms.



…to Bag of Words
The most frequently adopted model is the Bag of Words (BOW) model, i.e., a 
document is represented by the set of words it is composed of.

In : bow = set(feats)

In : len(bow)

Out: 6

In : bow

Out: ['america', 'of', 'president', 'states', 'the', ' united']



…to Bag of Words
BOW loses information on word frequency.

Counts of word occurrences in every document can be stored in 
additional data structures.

Similarly to unigram models, BOW loses word order information.

N-grams can be used also in this case.

BOW representation has a fixed length, easier to manage by ML algorithms.

The set of all the distinct extracted features may be called 'vocabulary', 
'dictionary', 'feature set, 'feature space'.



Bag of Words
BOW loses the frequency and word order information.

In : t1 = set(word_tokenize('I won, and thus you lose.') )

In : t2 = set(word_tokenize('I lose, and thus you won.'))

In : t1

Out: ['and', 'lose', 'thus', 'won', 'you']

In : t2

Out: ['and', 'lose', 'thus', 'won', 'you']

In : t1==t2

Out: True



N-grams



Word n-grams
Information on positional relations can be extracted with Word n-grams 
features, which capture local word order.

In : t1 = set(nltk.ngrams(nltk.word_tokenize('I won, and thus, you lose.'),2))

In : t2 = set(nltk.ngrams(nltk.word_tokenize('I lose, and thus, you won.'),2))

In : t1, t2, t1==t2

Out: {'W2G_and_thus', 'W2G_thus_you', 'W2G_won_and', 'W2G_you_lose', 'and', 'lose', 

'thus', 'won', 'you'},

Out: {'W2G_and_thus', 'W2G_lose_and', 'W2G_thus_you', 'W2G_you_won', 'and', 'lose', 

'thus', 'won', 'you'}

Out: False

Feature format ('W2G_…') doesn't matter as long as there is no ambiguity 
between features extracted by different methods.



Character n-grams
Character n-grams mitigate the effect of typos.

In : t1 = set(nltk.ngrams('rainbow',3))

In : t2 = set(nltk.ngrams('rainbaw',3))

In : t1, t2

Out:{'C3G_a_i_n', 'C3G_b_o_w', 'C3G_i_n_b', 'C3G_n_b_o', 

'C3G_r_a_i', 'rainbow'}

Out:{'C3G_a_i_n', 'C3G_b_a_w', 'C3G_i_n_b', 'C3G_n_b_a', 

'C3G_r_a_i', 'rainbaw'}

In : t1.intersection(t2)

Out: {'C3G_a_i_n', 'C3G_i_n_b', 'C3G_r_a_i'}



Collocations



Collocations & Terminology Extraction
Some words are used together to form expressions that have a semantic 
that's different from the simple composition of the original words.

"strong tea", *"powerful tea",

 "break a leg", "star wars", "formula 1"

A simple automatic recognition of collocations and multi-word terms can be 
done by observing statistical anomalies in the co-occurrence of words with 
respect to an assumption of independence.

https://nlp.stanford.edu/fsnlp/promo/colloc.pdf


Collocations & Terminology Extraction
Collocation extraction methods are implemented in both NLTK and GenSim.

GenSim implementation uses the following formula to rank token pairs by 
their relevance as collocations.

count(wi) (or wj) counts how many time wi (or wj) appears.
count(wiwj) counts how many time wiand wj appear together.

The higher the ratio, the more probable the use of the expression wiwj has a 
different meaning than the simple juxtaposition of  wiand wj 

https://radimrehurek.com/gensim/
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf


Collocations & Terminology Extraction
GenSim's collocation extraction method can be applied iteratively, to extract 
collocations composed of more than two words.

Functional words (determiners, conjunctions, prepositions, pronouns, 
auxiliary verbs…) may be ignored when considering adjacency of words, so as 
to be able to capture longer collocations, e.g.,

"President of the United States."

Without considering the high frequency of terms "of" and "the" in the 
computation.



NLP tools: Chunking, NER, & Parsing



Chunking
Chunking (also called shallow parsing) consists in the grouping of words in a 
sentence into short phrases that form a syntactic/semantic unit, e.g., a noun 
phrase.

It is a in intermediate complexity task between POS tagging and parsing.

She sells sea shells by the sea shore



NER
Named entity recognition is an information extraction process that aims at 
recognizing expressions denoting entities in text and classifying them by the 
type of entity:

● Person: Andrea Esuli, Elon Musk, Italian President, 
● Geo-political entity: Italy, Spain, United States, Pisa, Paris
● Organization: Italian National Research Council, University of Pisa
● Other (events, nationalities…)



Parsing
Parsing consists in the recognition in a sequence words of their 
syntactic/semantic relations according to the grammar of the language.

The result of dependency parsing is typically a parse tree, rooted in the main 
verb of the sentence.

https://en.wikipedia.org/wiki/Dependency_grammar


spaCy



spaCy
spaCy implements a rich range of NLP tools for the many languages:

English, German, Spanish, Portuguese, French, Italian, Dutch…

and also a multi-language model that is able to handle multiple languages at 
the same time, but only to perform Named Entity Extraction.

A piece of text is passed to a spaCy model, that returns an object which has 
method to access many different NLP outputs.

nlp = spacy.load('en')
processed_text = nlp(text)

https://spacy.io/


spaCy
Installation:

>conda install spacy

Select the languages you need and download relative the models:

    import spacy.cli

    spacy.cli.download("en")

    spacy.cli.download("it")

    spacy.cli.download(...)

If the above fails try using command line (if the following command fails too try running it as 
administrator):

>python -m spacy download en

>python -m spacy download it

>python -m spacy download ...



Too much features



Too much features
It is up to the ML expert to define the set of features (feature engineering)

Features can easily grow to an unmanageable size.

A trade off between information richness and computational cost must be met.

The 9,000 training documents of the Reuters 21578 collection (a small standard 
dataset for ML experiments) contains 20,123 distinct words (numbers 
excluded).

● Adding word bi-grams pushes the number of features over 100k.

● The distribution of words in text follows a Zipf law.
313 words generate half of the 500k occurrences in Reuters 21578.

https://en.wikipedia.org/wiki/Zipf%27s_law


Zipf law
Frequency of use is inversely proportional to rank by frequency: f ∝ 1/r

Principle of least effort: both the speaker and the hearer in communication try 
to minimize effort:

● Speakers tend to use a small vocabulary of common (shorter) words
● Hearers prefer a large vocabulary of rarer less ambiguous words
● Zipf's law is the result of this compromise

Related laws …

● Number of meanings m of a word obeys the law: m ∝ 1/f
● Inverse relationship between frequency and length





Stopwords
How much words like of, the, a, an, to, contribute to the semantic of a 
document?

the president of the united states of america

president united states america

The most common words of a language are usually referred as stopwords, i.e., 
words that can be removed from text without losing much information.

Stopwords lists are commonly provided by many NLP tools, yet they may not 
fit all the applications.

For example, MySQL's stopword list includes words like appreciate, serious and 
unfortunately, which are relevant for sentiment classification.





Stopwords
In : import nltk

In : from nltk.corpus import stopwords

In : stopwords.words('english')

Out: ['i', 'me', 'my', 'myself', 'we', 'our', 'ours', ' ourselves', 

...]

In : features = set(nltk.word_tokenize('the president of the united 

states of america'))

In : less_features = features.difference(stopwords.words('english'))

In : less_features

Out: {'america', 'president', 'states', 'united'}



Rare features
Features that appear in very few documents do not bring useful information 
to generalize the TM problem we are facing.

If a words appears rarely in text observed in the past, it will likely be rare in 
future text. Making it of little help to process most of the future input text.

A word can be rare because it is a random typo, or some kind of artificially 
built identifier that is bound to the document, e.g., a slug.

Hapax legomena (words that appear only once) usually account for a large 
portion of the distinct words appearing in a text collection.

Removing rare words makes it faster to process the indexed text, also 
requiring less memory space.

https://en.wikipedia.org/wiki/Clean_URL#Slug
https://en.wikipedia.org/wiki/Hapax_legomenon




Feature selection
What about the features with an in-between frequency?
Are they all of similar usefulness?

'My wife Sandra bought this awesome TV.'

For sentiment analysis wife and Sandra are less informative than awesome.

Can we estimate the information contribute of a feature?

We can use information theory functions to estimate the relevance of features 
and remove the less informative ones:

● it makes less computationally expensive to build the model.
● it removes noise that could decrease the model accuracy.



Feature selection
Exploiting feature-category correlation (either positive or negative) to select 
informative features:

Feature selection is a supervised process, i.e., it requires labeled data.



Feature selection
Typical feature selection functions:

● mutual information measures the feature-class correlation

● chi-square tests the feature-class independence

Keeping the 20%-10% of the original features is a common choice in text 
classification*.
*Y. Yang, J.O. Pedersen. A comparative study on feature selection in text categorization. ICML, 1997.

https://en.wikipedia.org/wiki/Mutual_information
https://en.wikipedia.org/wiki/Chi-squared_test
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.32.9956


Feature selection
D = 1000
Dc = 250     D¬c = 750

Df1 = 100     D¬f1 = 900
Df1,c = 50     D¬f1,c = 200     Df1,¬c = 50    D¬f1,¬c = 700

X2(f1,c) = 1000(50*700-200*50)2/(250*100*750*900) =   37.04

Df2 = 100     D¬f2 = 900
Df2,c = 90     D¬f2,c = 110     Df2,¬c = 10    D¬f2,¬c = 740

X2(f2,c) = 1000(90*740-110*10)2/(250*100*750*900) = 254.24

f2 is more informative than f1



Feature selection
From counts to probabilities:

D = 1000
Dc = 250     D¬c = 750
p(c) = Dc/D = 250/1000 = 0.25 p(¬c) = D¬c/D = 750/1000 = 0.75

Df1   = 100     D¬f1 = 900
p(f1) = Df1/D = 100/1000 = 0.1 p(¬f1) = D¬f1/D = 900/1000 = 0.9

Df1,c = 50     D¬f1,c = 200     Df1,¬c = 50    D¬f1,¬c = 700

p(f1,c) = Df1,c/D = 50/1000  = 0.05     p(¬f1,c) = D¬f1,c/D  = 200/1000 = 
0.2

p(f1,¬c) = Df1,¬c/D = 50/1000 = 0.05     p(¬f1,¬c) = D¬f1,¬c/D = 700/1000 = 
0.7



Feature selection
D = 1000
p(c) = 0.25 p(¬c) = 0.75

p(f1) = 0.1 p(¬f1) = 0.9
p(f1,c) = 0.05 p(¬f1,c) = 0.2 p(f1,¬c) = 0.05 p(¬f1,¬c)= 0.7

MI(f1,c) = 0.05*log(0.05/(0.1*0.25))+0.2*log(0.2/(0.9*0.25))
+0.05*log(0.05/(0.1*0.75))+0.7*log(0.7/(0.9*0.75)) = 0.007

p(f2) = 0.1 p(¬f2) = 0.9
p(f2,c) = 0.09 p(¬f2,c) = 0.11 p(f2,¬c) = 0.01 p(¬f2,¬c)= 0.74

MI(f2,c) = 0.09*log(0.09/(0.1*0.25))+0.11*log(0.11/(0.9*0.25))
+0.01*log(0.01/(0.1*0.75))+0.74*log(0.74/(0.9*0.75)) = 0.037



Vector Space Model



Vector Space Model
We now have each document represented as a 
|F|-dimensional vector w, where |F| is the number of 
distinct features extracted from text.

Documents whose vector are close one to each other 
are likely to be similar.

wdf indicates the relevance of the feature f in the 
document d.

Vectors are usually sparse, i.e., most of their values 
are zero.



Vector Space Model
Each feature is mapped to a distinct dimension in R|F| using a one-hot vector:

v('I') = [1, 0, 0, … , 0, 0, … , 0, 0, 0]

v('you') = [0, 1, 0, … , 0, 0, … , 0, 0, 0]

v('won') = [0, 0, 1, … , 0, 0, … , 0, 0, 0]

⁞
v('a_i_n') = [0, 0, 0, … , 0, 1, … , 0, 0, 0]

⁞
v('NN') = [0, 0, 0, … , 0, 0, … , 0, 0, 1]



Vector Space Model
A document is represented as the weighted sum of its features vectors:

For example:

                  d = 'you played a good game'

                v(d) = [0,w
played,d

,w
game,d

, 0,… …0, w
good,d

, 0… …0, 0]

The resulting document vectors are sparse:

How do set the weights wfd?



Weighting
Typical weighting methods:

● binary (bag of words): 

● tf (frequency), rewarding features that appears many times in the 
document:

● tf-idf, rewarding rare features with high tf :

Vectors can be normalized to unit length, to factor out differences deriving by 
the difference of length between documents.



Summary
● Text indexing enables building machine-processable representations of 

text.

● Features identify in text the observable sources of information.

● Not all features are relevant, an accurate selection can be beneficial to 
successive processing steps, both in terms of efficiency and in terms of 
efficacy.

● The vector space is a high dimensional space in which documents are 
distributed according to their content.


