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Probabilistic Language Model
A probabilistic/statistical language model is a probability distribution P over 
sequences of terms.

A language model can assign a probability to a document

P(d) = P(w1w2w3)

P(Divina commedia) = P('Nel mezzo del cammin…')



Probabilistic Language Model
Applications:

Machine Translation: 
P(high winds tonite) > P(large winds tonite)

Spell Correction: 
“The office is about fifteen minuets from my house"

P(about fifteen minutes from) > P(about fifteen minuets from)

Speech Recognition: 
P(I saw a van) >>  P(eyes awe of an)

Summarization, question- answering, etc.



Probabilistic Language Model
A probabilistic/statistical language model is a probability distribution P over 
sequences of terms.

Given a document d that is composed of a sequence of words w1w2w3, we can 
use the chain rule to decompose the probability of the document in terms of 
the probabilities of its words:

P(d) = P(w1w2w3) = P(w1)P(w2|w1)P(w3|w1w2)

P(Divina commedia) = P('Nel mezzo del cammin…') = 
P('Nel')P('mezzo'|'Nel')P('del'|'Nel mezzo')P('cammin'|'Nel mezzo del')...

https://en.wikipedia.org/wiki/Chain_rule_(probability)


Probabilistic Language Model
P(d) = P(w1w2w3) = P(w1)P(w2|w1)P(w3|w1w2)

P(Divina commedia) = P('Nel mezzo del cammin…') = 
P('Nel')P('mezzo'|'Nel')P('del'|'Nel mezzo')P('cammin'|'Nel mezzo del')...

The formula above makes no assumptions and can exactly model any 
language, yet it is impractical because it requires to learn the probability of 
any sequence in the language.

Depending on the assumptions we make on the probability distribution, we 
can create statistical model of different complexity.



Unigrams model
A unigram model assumes a statistical independence between words, i.e., the 
probability of d is the product of the probabilities of its words:

P(d) = P(w1w2w3) = P(w1)P(w2|w1)P(w3|w1w2) 

=unigram P(w1)P(w2)P(w3) = 𝛱i P(wi)

P(Divina commedia) = P('Nel mezzo del cammin…') 

=unigram P('Nel')P('mezzo')P('del')P('cammin')...



Unigrams model
P(d) = P(w1w2w3) = P(w1)P(w2|w1)P(w3|w1w2) 

=unigram P(w1)P(w2)P(w3) = 𝛱i P(wi)

P(Divina commedia) = P('Nel mezzo del cammin…') 

=unigram P('Nel')P('mezzo')P('del')P('cammin')...

Unigram model assumption of statistical independence also loses information 
about word order.

How do we determine the probabilities?



Counting
How do we determine the probabilities?

Counting from a collection of documents (training set) for which we will 
derive the parameters of our Language Model.

P(w) = #(occurrences of w in D)/#(occurrences in D)

P('che') = #(occurrences of 'che' in 'Divina commedia')/#(occurrences in 'Divina 
commedia') = 3738/106297 = 0.035

The ratio of counts of occurrences of a word by the total number of 
occurrences of word produces a maximum likelihood estimation, i.e., the 
one that maximises the probability of train data in the model.

https://en.wikipedia.org/wiki/Maximum_likelihood_estimation


Unigrams model
Given a training collection D we can use to fit our model, and then compute 
probability of any text:

P(d) = P(w1w2w3) = P(w1)P(w2|w1)P(w3|w1w2) 

=unigram P(w1)P(w2)P(w3) = 𝛱i P(wi)

=𝛱i #(occurrences of wi in D)/#(occurrences in D)

What if a word does not appear in D? P(w)=0/#(occurrences in D) = 0

If even a single word is missing from the language model we get P(d)=0



Smoothing
What if a word does not appear in D? P(w)=0

If even a single word is missing from the language model we get P(d)=0

Words that are never observed in the collection used to infer LM statistics can 
be given a non-zero probability, 

so that a single word does not crash P(d) to zero,

yet very small,

so text with unknown words are given a lower probability than those with 
all-known words.



Smoothing
Smoothing methods add some mass probability to unknown events, taking it 
from known events.

Add one (Laplace smoothing): adding one occurrence to every event, including 
the unknown one.

               #(occurrences of w in D)+1
Padd-1(w) =   _____________________________

            #(occurrences in D)+V

where V = number of observed words + 1

Adding 1 may alter too much the probabilities of known events, specially when 
using small collections.

https://en.wikipedia.org/wiki/Additive_smoothing


Smoothing
Adding 1 may be alter too much the probabilities for known events, and can 
give relatively too much importance to unknown events.

We can choose to add a smaller value k<1, e.g., k=0.01

         #(occurrences of w in D)+k
Padd-k(w) =   _____________________________

            #(occurrences in D)+kV

Smoothing adds robustness with respect to unknown and rare event, but it is 
always preferable, when possible, to add more text to collection to get 
stronger statistics.

More info on smoothing.

https://nlp.stanford.edu/~wcmac/papers/20050421-smoothing-tutorial.pdf


Log space computation
Instead of multiplying probabilities, we can take logarithms of probabilities 
and sum them (log-space).

log(P1 P2 P3 P4) = log(P1) + log(P2) + log(P3) + log(P4)

Advantages:
● avoid numbers smaller than machine precision (underflow error)
● it is a linear model 
● we can easily go back to probabilities at the end of computation
● marginal efficiency gain: sum is faster than multiplication (IF individual 

logs are precomputed)

https://en.wikipedia.org/wiki/Arithmetic_underflow
https://en.wikipedia.org/wiki/Linear_classifier


From unigrams to n-grams
With unigram we made an assumption of total independence between words, 
which is too harsh and leads to poor models.

Yet, we know that considering all the dependencies between words is too 
complex and statistically fragile.

Can we find a balance between these two extremes?



Markov property
In a stochastic process the next event may depend on an arbitrarily long 
sequence of past events, e.g.: sampling without replacement.

In a stochastic process that satisfies the Markov property the next event 
depends only on the present event, and it this thus independent for any 
other past event.

N-order Markov property states that event at time T depends only from the 
past N events.

We can define a simple language model, yet making it more powerful than 
simple unigrams, by assuming that a Markov assumption of some order holds 
for our language.

https://en.wikipedia.org/wiki/Markov_chain


Bigrams model
A bigram model assumes a statistical dependence of a word from the preceding 
one:

P(d) = P(w1w2w3) = P(w1)P(w2|w1)P(w3|w1w2) 

= P(w1)P(w2|w1)P(w3|w2) = 𝛱i P(wi|wi-1)

P(Divina commedia) = P('Nel mezzo del cammin…') =bigram 
P('Nel')P('mezzo'|'Nel')P('del'|'mezzo')P('cammin'|'del')...

In this way, some information about word order is captured.

This simple addition is already able to capture a good amount of syntactic 
regularities.



Smoothing
How to handle bigrams that are never observed in the collection?

● Add-1/Add-k

                              #(occurrences of "wi-1wi" in D)+k
Padd-k(wi|wi-1) =   _____________________________
                          #(occurrences of wi-1 in D)+kV

● Bayesian prior smoothing (back-off to unigrams):

                              #(occurrences of "wi-1wi" in D)+P(wi)
Padd-k(wi|wi-1) =   _____________________________

                          #(occurrences of wi-1 in D)+1



N-grams models
A n-gram model assumes a statistical dependence of a word from the n 
preceding ones:

P(d) = P(w1w2w3) = P(w1)P(w2|w1)P(w3|w1w2) 

=n-gram P(w1)P(w2|w1)P(w3|w2) = 𝛱i P(wi|wi-1)

This simple addition is already able to capture a good amount of language 
regularities.

In general, the longer the n-gram we adopt for the model:

● the more semantic is captured;
● the less statistical significant is the model (memorization/generalization).



Evaluation of language models
Language models usually get evaluated extrinsically, i.e., as the benefit they 
contribute to another problem, e.g., text classification.

Extrinsic evaluation is costly, because it requires running multiple additional 
experiments.

Extrinsic evaluation may have different outcomes with respect to the specific 
tested problem, yet this may be desirable because we want to find the best 
model for a specific task.

Intrinsic evaluation of language models is based on some metric that 
directly measures how a language model is able to represent effectively the 
information represented in language.



Evaluation: Perplexity
Once a probabilistic model is fit on training data, we can use test data from 
the same source to evaluate how good it is at predicting probabilities.

Perplexity measures how much surprised is a model to observe some text.

Given a test text W its (normalized) perplexity is:

A high perplexity means that the text has got a low probability, a low 
perplexity means that the text has got a high probability, which is what we aim 
for, given that test text is from the same source of training data.

https://en.wikipedia.org/wiki/Perplexity


Evaluation: Perplexity
The numeric value of the perplexity measure can be interpreted as the 
average branching factor in predicting the next word.

E.g., a perplexity value of 178 means that when the model predicts the next 
word, it is like choosing between 178 words with uniform probability (note 
that the actual vocabulary is usually much larger).

N-grams models have lower perplexity than unigrams models, but when the N 
values gets to high it get worse again due to overfitting on the training data.

Perplexity can be also interpreted in terms of cross-entropy.



Topic modeling



Topic modeling
The Latent Dirichlet Allocation is an unsupervised processing tool that fits a 
probabilistic generative model of text.

It assumes that text can be modeled as the output of the combination of a 
number of latent (unobservable) topics.

A topic is thus a generator of words, following some probability 
distribution.

Words of a document are produced by a combination of topics.

The probabilistic model is fit on an observable collection of documents.

Parameters of the model define topics as probability distribution on words.

https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation


Topic modeling
The model:

We have a collection of M documents
A document di is composed by N words wij
α is the per-document topic distribution
β is the per-word topic distribution
θi is the topic distribution for document i
φk is the word distribution for topic k
zij is the topic of word wj in document di

The highest values in the distribution φk for each topic defines its profile, i.e., 
a list of words weighted by their relevance.


