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Probability
How likely is some event to happen?

● Toss a coin: probability of head?
● Toss a coin: probability of six consecutive tails?
● Lotto numbers: probability of the number 3
● Lotto numbers: probability of a sequence of five consecutive numbers?
● Weather: probability of sun?
● Weather: probability of rain in a sunny day?
● Weather: probability of rain in a cloudy day?
● Language: probability of a word to be a verb?
● Language: probability of "lemon" to be a verb?
● Language: probability of "lemon" to follow "the"?
● Language: probability of "the" to precede "lemon"?



Experiments and outcomes
An experiment is a repeatable process that produces an outcome.

The sample space is the set of all possible outcomes of a process Ω.
● Finite: 

○ coin toss: {H,T}, 
○ dice: {1, 2, 3, 4, 5, 6}, 
○ lotto: sequences of five numbers from {1, 2, 3, 4, ..., 90}

● Infinite: 
○ temperature: real number, 
○ point on surface: x,y coordinates



Events
The event space is the set of all possible subsets of outcomes of the sample 
space, i.e., the power set 𝒫(Ω) of outcomes.

Events are elements from the event space, i.e., a subset of outcomes, e.g.:

Ecoin= {head}, Edice= {1,2,3}, Etemp = 20, Etemp= 18<T<25, Exy = {x=1,y=2}

● The event that include any possible outcome is the sure event, that is 
identified by whole set Ω.

● The event that does not include any outcome is the impossible event, i.e., 
an empty set ∅.

https://en.wikipedia.org/wiki/Power_set


Events
● Set operations (union ∪, intersection ∩) among events define other 

events.

● Two events E and F are mutually exclusive if E∩F=∅

○ {1, 2, 6}∩{3, 5}=∅

● Two events E and F are complementary (F=Ec=¬E) iff E∩F=∅ and E∪F = Ω

○ {1, 2, 6}∩{3, 4, 5}=∅ and {1, 2, 6}∪{3, 4, 5}=Ω



Venn diagrams
Visualization of events in the event space.

Ω is the event space.
Ω



Venn diagrams
Visualization of events in the event space.

A is an event, Ac is its
complement Ω
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Venn diagrams
Visualization of events in the event space.

A and C are mutually
exclusive.

B and C are mutually 
exclusive.

A and B are not mutually
exclusive.

Ω
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Venn diagrams
Visualization of events in the event space.

A∩B is the region where
both A and B happen. Ω

A
BA∩B



Venn diagrams
Visualization of events in the event space.

A∪B is the event where
either A or B, or both,
happen

Ω

A∪
B



Probability
A probability law P assigns to every event E a real number from 0 to 1.

● 0 ⩽ P(E) ⩽ 1
● Pcoin({tail})=0.5
● Pdice({1}) = 1/6
● 0 means that the event is almost impossible
● 1 means that the event is almost sure

Why almost? (hint: its related to infinite sample spaces)

A probability law must satisfy a set of axioms

https://en.wikipedia.org/wiki/Almost_surely


Axioms of Probability
A probability law P assigns to every event E a number that models its 
likelihood to happen.
A probability law must satisfy three axioms:

● Non-negativity: ∀ E. P(E) ⩾ 0
● Unitarity: P(Ω) = 1
● 𝜎-additivity:

For any set of mutually exclusive events E1, E2… En       P(∪iEi) = ΣiP(Ei)

Ω, 𝒫(Ω) and P define the probability space.

● Monotonicity
○ P(A) ⩽ P(B) for any A ⊆ B



From counts to probability
When single outcomes of a process have uniform probabilities, i.e., they 
have all the same chance to happen, we can determine P(E) of more complex 
event by counting.

P(E) = number of positive outcomes / total number of outcomes.

For many processes we can count the number of outcomes they can produce:

#(coin) = 2 #(dice) = 6

If a process is repeated k times, each with n possible outcomes, the total 
number of outcomes is the nk:

#(coin thrown k time) = 2k #(dice thrown k time) = 6k



From counts to probability
More complex event spaces may require combinatorial analysis.

Lotto is a sequence of five extractions without replacement:

#(cinquina at lotto) = 90*89*88*87*86/(5*4*3*2*1) =   43,949,268

Explanation:

● Numerator: the first number is extracted from 90 number, the second 
from 89, the third from 88…

● Denominator: order does not count. We can place the first number in five 
positions, the second in four, the third in three...

Side note: Italian lotto pays 6,000,000 times the bet (~7.3 times less the risk)

https://www.math.purdue.edu/~stindel/teaching/ma416/combin-analysis.pdf


From counts to probability
To compute a probability we then have to count the number of positive events 
(or their complement):

#(two consecutive tosses with same outcome) = #({HH,TT}) = 2
#(six consecutive tosses with same outcome) = #({HHHHHH,TTTTTT}) = 2

#(two consecutive 6 with a dice) = #({66}) = 1
#(two consecutive odd numbers with a dice) = #({22,24,26,42,44,46,62,64,66}) 

   = 9

#(cinquina playing six numbers) = 6
#(cinquina playing seven numbers) = 6*7/2 = 21 divided by two because the order does not count



Uniform probabilities: from counts to probability
The probability is the ratio of positive outcomes over the total number of 
outcomes:

P(two consecutive tosses with same outcome) = 2/4 = 0.5
P(six consecutive tosses with same outcome) = 2/64 = 0.03125

P(two consecutive 6 with a dice) = 1/36 = 0.028
P(two consecutive odd numbers with a dice) = 9/36 = 0.25

P(cinquina playing six numbers) = 6/43,949,268 = 1.4*10-7

P(cinquina playing seven numbers) = 21/43,949,268 = 4.8*10-7



Properties of probabilities
● Probability from counts (for equiprobable outcomes):

P(E) = #(E)/#(Ω)

● Union of independent events

P(A or B) = P(A) + P(B)

● Intersection of independent events

P(A and B) = P(A)*P(B)

● Probability of complement

P(A) = 1 - P(Ac) = 1 - P(Ω ∖ A)



Non-uniform probabilities
Outcomes may be not equiprobable. In this case we cannot rely on counting, 
but we can exploit properties of probabilities to compute P(E) for complex 
events.

A coin with P(H) = 0.25.

P(T) = 1-P(H) = 0.75

P(two heads or two tails) = P(two heads) + P(two tails) = 0.252 + 0.752 = 0.625

P(one head over two tosses) = P(HH)+P(HT)+P(TH) = 0.252 + 0.75*0.25*2 = 
0.4375

P(one head over two tosses) = 1 - P(two tails) = 1 - 0.752 = 0.4375



Probabilities and language
P(E1) = What's the probability of a word in a vocabulary to be a verb?

P(E2) = What's the probability to use a verb in a language?

P(E1) =? P(E2)



Probabilities and language
P(E1) = What's the probability of a word in a vocabulary to be a verb?

To determine E1 we can take a vocabulary and count how many of its words 
are verbs.

P(E1) = #(verbs in vocabulary) / #(words in vocabulary)



Probabilities and language
P(E2) = What's the probability to use a verb in a language?

To determine E2 we can take a lot of text and count how many time a verb 
appears.

P(E2) = #(occurrences of verbs) / #(occurrences of words)



Probabilities and language
P(E1) = What's the probability of a word in a vocabulary to be a verb?

P(E2) = What's the probability to use a verb in a language?

P(E1) ≠ P(E2)

Language Models model the use of language from large collections of text.

Language modeling can be done in many ways:

What's the most probable word to appear after 'would'?
What's the probability of the letter 'h' to follow the letter 't'?

These are conditional probabilities.



Conditional probabilities
A conditional probability P(A|B) 

determines the probability of the outcome to satisfy the event A 

assuming that the outcome satisfies for sure the event B.

Ω

A
BA∩B



Conditional probabilities
B is the set of outcome granted to happen.

Any outcome X outside B has P(X) = 0.

How much A does "cover" B?
The highest the coverage the highest the probability.

   P(A|B) = P(A∩B)/P(B)
Ω

A
BA∩B



Conditional probabilities
P('x') = ? P(red) = ? P('x'|red) =?    P(red| 'x') = ?  
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Conditional probabilities
P('x') = 15/36 P(red) = 17/36 P('x'|red) = 7/17   P(red| 'x') = 7/15 
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Conditional probabilities
Conditional probabilities allow to improve the prediction of the outcome of an 
experiment when partial information (evidence) is available.

Conditional probabilities are a key tool for statistical inference.

What's the probability of snow?
What's the probability of snow in Pisa?
What's the probability of snow in Pisa, when Temp = 30°C?

What's the most probable word to appear after 'would'?
What's the probability of the letter 'h' to follow the letter 't'?
What's the probability of a document containing words 'president', 
'elections' and 'polls' to belong to topic 'cooking'?



From conditional probabilities...
P(A,B) means the probability of events A and B to occur at the same time, 
i.e., P(A,B) = P(A∩B). We can link P(A|B) to P(A,B):

P(A|B) = P(A∩B) / P(B) = P(A,B) / P(B)

hence P(A,B) = P(A|B)P(B)

Also P(B|A) is linked to P(A,B):

P(B|A) = P(A∩B) / P(A) = P(A,B) / P(A)

hence P(A,B) = P(B|A)P(A)

hence P(B|A)P(A) = P(A|B)P(B)

Ω

A
BA∩B



...to Bayes theorem
From P(B|A)P(A) = P(A|B)P(B) we can derive:

P(B|A) = P(A|B)P(B) / P(A)

where

P(B) = prior beliefs

P(A|B) = likelihood

P(A) = evidence

P(B|A) = posterior beliefs

Ω

A
BA∩B



Bayesian classifier
P(B|A) = P(A|B)P(B) / P(A)

posterior beliefs = prior beliefs * likelihood / evidence

Bayes theorem can be used to define a probabilistic classifier:

P(class|document) ∝ P(document|class) P(class)

The P(evidence) term can be discarded because it is constant when testing for 
different classes.

P(document|class) and P(class) can be estimated on a training set of 
labeled documents.



Bayesian classifier
We want to label document from a stream of news as either relevant for 
cooking or politics.

From a training set of labeled news from newspapers we can estimate:

P(cooking) = #(news about cooking)/#(all news) = 0.01
P(politics) = #(news about politics)/#(all news) = 0.12

These two probabilities the prior beliefs we have about the two labels.

If we have to label an unknown document, we have twelve times more 
chances of a correct classification if we label it with the label politics.

What if we are given the evidence that it contains the word 'zucchini'?



Bayesian classifier
We can compute the likelihood of a document belonging to one of the label 
to contain the evidence, again using a training set of labeled documents.

P('zucchini'| cooking) = #(cooking news with word 'zucchini')/#(cooking news) = 0.05
P('zucchini'| politics) = #(politics news with word 'zucchini')/#(politics news) = 0.001

Multiplying priors with likelihoods we obtain the posterior beliefs, i.e., the 
correction (update) of prior belief after observing the evidence:

P(cooking| 'zucchini') ∝ 0.05*0.01 = 0.0005
P(politics|'zucchini') ∝ 0.12*0.001 = 0.00012

For this document we have higher chances of a correct labeling for the label 
cooking, thus we assign this label.



Independent events
A and B are independent events 

if and only if 
the occurence of one event does not change the probability of occurrence of 
the other event, i.e.:

P(A|B) = P(A) and P(B|A) = P(B)

Which of these pairs of event are independent?
P1: (dice rolled even, dice rolled 1,2, or 3)
P2: (dice rolled even, dice rolled 1 or 2)

Independent events does not mean disjoint events.

P(A,B) = P(A)P(B)



Independent events
Assuming independence between events can simplify the modeling of 
probabilities of complex objects, e.g., text:

P(text) = P(word1,word2,word3,word4… wordn) =independence ∏iP(wordi)

The naïve bayesian classifier uses the assumption of word independence to 
easily model language probabilities.

Modeling some degree of dependence among events can produce more 
accurate models, e.g., n-gram language models.

https://en.wikipedia.org/wiki/Naive_Bayes_classifier

