Introduction to Probability

Andrea Esuli

Probability

How likely is some event to happen?

- Toss a coin: probability of head?
- Toss a coin: probability of six consecutive tails?
- Lotto numbers: probability of the number 3
- Lotto numbers: probability of a sequence of five consecutive numbers?
- Weather: probability of sun?
- Weather: probability of rain in a sunny day?
- Weather: probability of rain in a cloudy day?
- Language: probability of a word to be a verb?
- Language: probability of "lemon" to be a verb?
- Language: probability of "lemon" to follow "the"?
- Language: probability of "the" to precede "lemon"?

Experiments and outcomes

An **experiment** is a repeatable process that produces an **outcome**.

The **sample space** is the set of all possible outcomes of a process Ω .

- Finite:
 - coin toss: {H,T},
 - o dice: {1, 2, 3, 4, 5, 6},
 - lotto: sequences of five numbers from {1, 2, 3, 4, ..., 90}
- Infinite:
 - temperature: real number,
 - point on surface: x,y coordinates

Events

The **event space** is the set of all possible subsets of outcomes of the sample space, i.e., the **power set** $\mathscr{P}(\Omega)$ of outcomes.

Events are elements from the event space, i.e., a subset of outcomes, e.g.:

$$E_{coin}$$
 = {head}, E_{dice} = {1,2,3}, E_{temp} = 20, E_{temp} = 18E_{xy} = {x=1,y=2}

- The event that include any possible outcome is the **sure** event, that is identified by whole set Ω.
- The event that does not include any outcome is the **impossible** event, i.e., an empty set Ø.

Events

- Set operations (union ∪, intersection ∩) among events define other events.
- Two events E and F are **mutually exclusive** if $E \cap F = \emptyset$
 - {1, 2, 6}∩{3, 5}=∅
- Two events E and F are **complementary** ($F=E^c=\neg E$) iff $E\cap F=\emptyset$ and $E\cup F=\Omega$
 - {1, 2, 6}∩{3, 4, 5}=∅ and {1, 2, 6}U{3, 4, 5}=Ω

Visualization of events in the event space.

 Ω is the event space.

Visualization of events in the event space.

A is an event, A^c is its complement

Visualization of events in the event space.

A and C are mutually exclusive.

B and C are mutually exclusive.

A and B are not mutually exclusive.

Visualization of events in the event space.

A \cap B is the region where both A and B happen.

Visualization of events in the event space.

AUB is the event where either A or B, or both, happen

Probability

A **probability law** P assigns to every event E a real number from 0 to 1.

- 0 ≤ P(E) ≤ 1
- P_{coin}({tail})=0.5
- $P_{dice}({1}) = 1/6$
- 0 means that the event is *almost* impossible
- 1 means that the event is *almost* sure

<u>Why almost?</u> (hint: its related to infinite sample spaces)

A probability law must satisfy a set of axioms

Axioms of Probability

A **probability law** P assigns to every event E a number that models its likelihood to happen.

A probability law must satisfy three axioms:

- Non-negativity: $\forall E. P(E) \ge 0$
- Unitarity: $P(\Omega) = 1$
- *o*-additivity:

For any set of mutually exclusive events $E_1, E_2... E_n = P(U_i E_i) = \Sigma_i P(E_i)$

 Ω , $\mathcal{R}(\Omega)$ and P define the **probability space**.

- Monotonicity
 - $P(A) \leq P(B)$ for any $A \subseteq B$

From counts to probability

When single outcomes of a process have **uniform probabilities**, i.e., they have all the same chance to happen, we can determine P(E) of more complex event by **counting**.

P(*E*) = number of positive outcomes / total number of outcomes.

For many processes we can count the number of outcomes they can produce:

```
#(coin) = 2 #(dice) = 6
```

If a process is repeated k times, each with n possible outcomes, the total number of outcomes is the n^k :

#(coin thrown k time) = 2^k

#(dice thrown k time) = 6^{k}

From counts to probability

More complex event spaces may require <u>combinatorial analysis</u>.

Lotto is a sequence of five extractions **without replacement**:

#(cinquina at lotto) = 90*89*88*87*86/(5*4*3*2*1) = 43,949,268

Explanation:

- Numerator: the first number is extracted from 90 number, the second from 89, the third from 88...
- Denominator: order does not count. We can place the first number in five positions, the second in four, the third in three...

Side note: Italian lotto pays 6,000,000 times the bet (~7.3 times less the risk)

From counts to probability

To compute a probability we then have to count the number of positive events (or their complement):

#(two consecutive tosses with same outcome) = #({HH,TT}) = 2
#(six consecutive tosses with same outcome) = #({HHHHHH,TTTTT}) = 2

#(two consecutive 6 with a dice) = #($\{66\}$) = 1 #(two consecutive odd numbers with a dice) = #($\{22, 24, 26, 42, 44, 46, 62, 64, 66\}$) = 9

#(cinquina playing six numbers) = 6 #(cinquina playing seven numbers) = 6*7/2 = 21 divided by two because the order does not count

Uniform probabilities: from counts to probability

The probability is **the ratio** of **positive outcomes over the total number of outcomes**:

P(two consecutive tosses with same outcome) = 2/4 = 0.5 P(six consecutive tosses with same outcome) = 2/64 = 0.03125

P(two consecutive 6 with a dice) = 1/36 = 0.028 P(two consecutive odd numbers with a dice) = 9/36 = 0.25

P(cinquina playing six numbers) = $6/43,949,268 = 1.4*10^{-7}$ P(cinquina playing seven numbers) = $21/43,949,268 = 4.8*10^{-7}$

Properties of probabilities

• Probability from counts (for equiprobable outcomes):

 $\mathsf{P}(\mathsf{E})=\#(\mathsf{E})/\#(\Omega)$

• Union of independent events

P(A or B) = P(A) + P(B)

• Intersection of independent events

P(A and B) = P(A)*P(B)

• Probability of complement

 $P(A) = 1 - P(A^{c}) = 1 - P(\Omega \setminus A)$

Non-uniform probabilities

Outcomes may be not equiprobable. In this case we cannot rely on counting, but we can exploit properties of probabilities to compute P(E) for complex events.

A coin with P(H) = 0.25.

P(T) = 1 - P(H) = 0.75

P(two heads or two tails) = P(two heads) + P(two tails) = $0.25^2 + 0.75^2 = 0.625$

P(one head over two tosses) = P(HH)+P(HT)+P(TH) = 0.25² + 0.75*0.25*2 = 0.4375

P(one head over two tosses) = $1 - P(two tails) = 1 - 0.75^2 = 0.4375$

 $P(E_1)$ = What's the probability of a word in a vocabulary to be a verb?

 $P(E_2)$ = What's the probability to use a verb in a language?

 $P(E_1) = P(E_2)$

 $P(E_1)$ = What's the probability of a word in a vocabulary to be a verb?

To determine E_1 we can take a **vocabulary** and count **how many of its words are verbs**.

P(E₁) = #(verbs in vocabulary) / #(words in vocabulary)

P(E₂) = What's the probability to use a verb in a language?

To determine E₂ we can take **a lot of text** and count **how many time a verb appears**.

P(E₂) = #(occurrences of verbs) / #(occurrences of words)

 $P(E_1)$ = What's the probability of a word in a vocabulary to be a verb?

 $P(E_2)$ = What's the probability to use a verb in a language?

 $P(E_1) \neq P(E_2)$

Language Models model the use of language from large collections of text.

Language modeling can be done in many ways:

What's the most probable word to appear after 'would'? What's the probability of the letter 'h' to follow the letter 't'?

These are **conditional probabilities**.

A conditional probability P(A|B)

determines the **probability** of the outcome to satisfy the **event A**

assuming that the outcome **satisfies** for sure the **event B**.

B is the set of outcome granted to happen.

```
Any outcome X outside B has P(X) = 0.
```

How much A does "cover" B?

The highest the coverage the highest the probability.

P('x') = ? P(red) = ? P('x' | red) = ? P(red | 'x') = ?

 X
 O
 X
 O
 O
 O
 X
 X

 O
 X
 O
 X
 X
 O
 O
 O
 X
 X

 X
 X
 O
 X
 X
 O
 O
 O
 X
 X

 X
 X
 O
 X
 X
 O
 O
 O
 X
 X

 X
 X
 X
 O
 X
 O
 O
 O
 X
 X

 X
 O
 X
 O
 X
 O
 O
 X
 X
 Image: Color of the test of tes

P('x') = 15/36 P(red) = 17/36 P('x' | red) = 7/17 P(red | 'x') = 7/15

 X
 O
 X
 O
 O
 O
 X
 X

 O
 X
 O
 X
 X
 O
 O
 X
 X

 X
 X
 O
 X
 X
 O
 O
 O
 X
 X

 X
 X
 O
 X
 X
 O
 O
 O
 X
 X

 X
 X
 X
 O
 X
 Q
 Q
 Q
 Q
 Q
 Q
 Q

 X
 O
 X
 O
 O
 X
 O
 O
 X
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 <th

Conditional probabilities allow to improve the prediction of the outcome of an experiment when partial information (evidence) is available.

Conditional probabilities are a key tool for **statistical inference**.

What's the probability of snow? What's the probability of snow in Pisa? What's the probability of snow in Pisa, when Temp = 30°C?

What's the most probable word to appear after 'would'? What's the probability of the letter 'h' to follow the letter 't'? What's the probability of a document containing words 'president', 'elections' and 'polls' to belong to topic 'cooking'?

From conditional probabilities...

P(A,B) means the probability of events A and B to occur at the same time, i.e., $P(A,B) = P(A \cap B)$. We can link $P(A \mid B)$ to P(A,B):

 $P(A | B) = P(A \cap B) / P(B) = P(A,B) / P(B)$

hence P(A,B) = P(A|B)P(B)

hence P(A,B) = P(B|A)P(A)

```
Also P(B|A) is linked to P(A,B):
```

hence P(B|A)P(A) = P(A|B)P(B)

 $P(B|A) = P(A \cap B) / P(A) = P(A,B) / P(A)$

...to Bayes theorem

From P(B|A)P(A) = P(A|B)P(B) we can derive:

P(B|A) = P(A|B)P(B) / P(A)

where

P(B) = prior beliefs

P(A|B) = likelihood

P(A) = evidence

P(B|A) = posterior beliefs

Bayesian classifier

P(B|A) = P(A|B)P(B) / P(A)

posterior beliefs = prior beliefs * likelihood / evidence

Bayes theorem can be used to define a probabilistic classifier:

 $P(class | document) \propto P(document | class) P(class)$

The P(evidence) term can be discarded because it is constant when testing for different classes.

P(document|class) and P(class) can be **estimated** on a **training set** of **labeled documents**.

Bayesian classifier

We want to label document from a stream of news as either relevant for *cooking* or *politics*.

From a **training set** of **labeled news** from newspapers we can estimate:

P(cooking) = #(news about cooking)/#(all news) = 0.01 P(politics) = #(news about politics)/#(all news) = 0.12

These two probabilities the **prior** beliefs we have about the two labels.

If we have to label an unknown document, we have twelve times more chances of a correct classification if we label it with the label *politics*.

What if we are given the **evidence** that it contains the word 'zucchini'?

Bayesian classifier

We can compute the **likelihood** of a document belonging to one of the label to contain the evidence, again using a **training set** of **labeled documents**.

P('zucchini'| cooking) = #(cooking news with word 'zucchini')/#(cooking news) = 0.05 P('zucchini'| politics) = #(politics news with word 'zucchini')/#(politics news) = 0.001

Multiplying priors with likelihoods we obtain the **posterior** beliefs, i.e., **the correction (update) of prior belief after observing the evidence**:

P(cooking| 'zucchini') \propto 0.05*0.01 = 0.0005 P(politics|'zucchini') \propto 0.12*0.001 = 0.00012

For this document we have higher chances of a correct labeling for the label *cooking*, thus we assign this label.

Independent events

A and B are **independent events** *if and only if*

the occurrence of one event **does not change** the probability of occurrence of the other event, i.e.:

P(A | B) = P(A) and P(B | A) = P(B)

Which of these pairs of event are independent?

- P_1 : (dice rolled even, dice rolled 1,2, or 3)
- P₂: (dice rolled even, dice rolled 1 or 2)

Independent events does not mean disjoint events.

P(A,B) = P(A)P(B)

Independent events

Assuming independence between events can simplify the modeling of probabilities of complex objects, e.g., text:

 $P(text) = P(word_1, word_2, word_3, word_4, word_n) = \prod_{independence} \prod_i P(word_i)$

The <u>naïve bayesian classifier</u> uses the assumption of word independence to easily model language probabilities.

Modeling some degree of dependence among events can produce more accurate models, e.g., **n-gram language models**.