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2.3 WHITE NOISE AND LINEAR TIME SERIES

White Noise. A time series xt is called a white noise if {xt } is a sequence of
iid random variables with finite mean and variance. In particular, if xt is normally
distributed with mean 0 and variance σ 2, the series is called a Gaussian white noise.
For a white noise series, all the ACFs are 0. In practice, if all sample ACFs are close
to 0, then the series is a white noise series. On the basis of Figures 2.7 and 2.6b, the
monthly returns of IBM stock are close to white noise, whereas those of the Decile
10 portfolio are not.

In the following text, we discuss some simple statistical models that are useful
in modeling the dynamic structure of a time series. The concepts presented are also
useful later in modeling volatility of asset returns.

Linear Time Series. A time series xt is said to be linear if it can be written as

xt = µ +
∞∑

i=0

ψi at−i , (2.4)

where µ is the mean of xt , ψ0 = 1, and {at } is a sequence of iid random variables with
mean 0 and a well-defined distribution (i.e., {at } is a white noise series). It will be
seen later that at denotes the new information at time t of the time series and is often
referred to as the innovation or shock at time t . Thus, a time series is linear if it can
be written as a linear combination of past innovations. In this book, we are mainly
concerned with the case where the innovation at is a continuous random variable.
Not all financial time series are linear, but linear models can often provide accurate
approximations in real applications.

For a linear time series in Equation (2.4), the dynamic structure of xt is governed
by the coefficients ψi , which are called the ψ-weights of xt in the time series litera-
ture. If xt is weakly stationary, we can obtain its mean and variance easily by using
properties of {at } as

E (xt ) = µ, Var(xt ) = σ 2
a

∞∑

i=0

ψ2
i , (2.5)

where σ 2
a is the variance of at . Because Var(xt ) < ∞, {ψ2

i } must be a convergent
sequence, implying that ψ2

i → 0 as i → ∞. Consequently, for a stationary series,
impact of the remote shock at−i on the return xt vanishes as i increases.

The lag-ℓ autocovariance of xt is

γℓ = Cov(xt , xt−ℓ) = E

⎡

⎣
( ∞∑

i=0

ψi at−i

) ⎛

⎝
∞∑

j=0

ψj at−ℓ−j

⎞

⎠

⎤

⎦
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= E

⎛

⎝
∞∑

i ,j=0

ψi ψj at−i at−ℓ−j

⎞

⎠ =
∞∑

j=0

ψj+ℓψj E (a2
t−ℓ−j )

= σ 2
a

∞∑

j=0

ψj ψj+ℓ. (2.6)

Consequently, the ψ-weights are related to the autocorrelations of xt as follows:

ρℓ = γℓ

γ0
=

∑∞
i=0 ψi ψi+ℓ

1 +
∑∞

i=1 ψ2
i

, ℓ ≥ 0, (2.7)

where ψ0 = 1. Linear time series models are econometric and statistical models
employed to describe the pattern of the ψ-weights of xt . For a weakly stationary time
series, ψi → 0 as i → ∞ and, hence, ρℓ converges to 0 as ℓ increases. For asset
returns, this means that, as expected, the linear dependence of the current return xt on
the remote past return xt−ℓ diminishes for large ℓ.

2.4 SIMPLE AUTOREGRESSIVE MODELS

When xt has a statistically significant lag-1 autocorrelation, the lagged value xt−1
might be useful in predicting xt . A simple model that makes use of such predictive
power is

xt = φ0 + φ1xt−1 + at , (2.8)

where {at } is assumed to be a white noise series with mean 0 and variance σ 2
a . This

model is in the same form as the well-known simple linear regression model, in which
xt is the dependent variable and xt−1 is the explanatory variable. In the time series
literature, model (Eq. 2.8) is referred to as an AR model of order 1 or simply an AR(1)
model. This simple model is also widely used in stochastic volatility modeling when
xt is replaced by its log volatility (Chapter 4).

The AR(1) model in Equation (2.8) has several properties similar to those of
the simple linear regression model. However, there are some significant differences
between the two models, which we discuss later. Here, it suffices to note that an AR(1)
model implies that, conditional on the past return xt−1, we have

E (xt |xt−1) = φ0 + φ1xt−1, Var(xt |xt−1) = Var(at ) = σ 2
a .

For asset returns, the above results imply that given the past return xt−1, the cur-
rent return is centered around φ0 + φ1xt−1 with standard deviation σa . This is a
Markov property such that conditional on xt−1, the return xt is not correlated with xt−i
for i > 1. Obviously, there are situations in which xt−1 alone cannot determine the
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conditional expectation of xt and a more flexible model must be sought. A straight-
forward generalization of the AR(1) model is the AR(p) model

xt = φ0 + φ1xt−1 + · · · + φpxt−p + at , (2.9)

where p is a nonnegative integer and {at } is defined in Equation (2.8). This model
says that, given the past data, the first p lagged variables xt−i (i = 1, . . . , p) jointly
determine the conditional expectation of xt . The AR(p) model is in the same form
as a multiple linear regression model with lagged values serving as the explanatory
variables.

2.4.1 Properties of AR Models

For effective use of AR models, it pays to study their basic properties. We discuss
properties of AR(1) and AR(2) models in detail and give the results for the general
AR(p) model.

AR(1) Model. We begin with the sufficient and necessary condition for weak
stationarity of the AR(1) model in Equation (2.8). Assuming that the series is weakly
stationary, we have E (xt ) = µ, Var(xt ) = γ0, and Cov(xt , xt−j ) = γj , where µ and γ0
are constants and γj is a function of j , not t . We can easily obtain the mean, variance,
and autocorrelations of the series as follows. Taking the expectation of Equation (2.8)
and using E (at ) = 0, we obtain

E (xt ) = φ0 + φ1E (xt−1).

Under the stationarity condition, E (xt ) = E (xt−1) = µ and hence

µ = φ0 + φ1µ or E (xt ) = µ = φ0

1 − φ1
.

This result has two implications for xt . First, the mean of xt exists if φ1 ̸= 1. Second,
the mean of xt is 0 if and only if φ0 = 0. Thus, for a stationary AR(1) process, the
constant term φ0 is related to the mean of xt via φ0 = (1 − φ1)µ, and φ0 = 0 implies
that E (xt ) = 0.

Next, using φ0 = (1 − φ1)µ, the AR(1) model can be rewritten as

xt − µ = φ1(xt−1 − µ) + at . (2.10)

By repeated substitutions, the prior equation implies that

xt − µ = at + φ1at−1 + φ2
1at−2 + · · ·

=
∞∑

i=0

φi
1at−i . (2.11)



SIMPLE AUTOREGRESSIVE MODELS 53

This equation expresses an AR(1) model in the form of Equation (2.4) with ψi =
φi

1. Thus, xt − µ is a linear function of at−i for i ≥ 0. Using this property and the
independence of the series {at }, we obtain E [(xt − µ)at+1] = 0. By the stationarity
assumption, we have Cov(xt−1, at ) = E [(xt−1 − µ)at ] = 0. This latter result can also
be seen from the fact that xt−1 occurred before time t and at , being a shock at time
t , does not depend on any past information. Taking the square and the expectation of
Equation (2.10), we obtain

Var(xt ) = φ2
1Var(xt−1) + σ 2

a ,

where σ 2
a is the variance of at , and we make use of the fact that the covariance between

xt−1 and at is 0. Under the stationarity assumption, Var(xt ) = Var(xt−1), so that

Var(xt ) = σ 2
a

1 − φ2
1

provided that φ2
1 < 1. The requirement of φ2

1 < 1 results from the fact that the vari-
ance of a random variable is nonnegative and xt is weakly stationary. Consequently,
the weak stationarity of an AR(1) model implies that −1 < φ1 < 1, that is, |φ1| < 1.
Yet if |φ1| < 1, then by Equation (2.11) and the independence of the {at } series, we
can show that the mean and variance of xt are finite and time invariant; see Equation
(2.5). In addition, by Equation (2.6), all the autocovariances of xt are finite. Therefore,
the AR(1) model is weakly stationary. In summary, the necessary and sufficient
condition for the AR(1) model in Equation (2.8) to be weakly stationary is |φ1| < 1.

Using φ0 = (1 − φ1)µ, one can rewrite a stationary AR(1) model as

xt = (1 − φ1)µ + φ1xt−1 + at .

This model is often used in the finance literature with φ1 measuring the persistence
of the dynamic dependence of an AR(1) time series.

Autocorrelation Function of an AR(1) Model. Multiplying Equation (2.10)
by at , using the independence between at and xt−1, and taking expectation, we obtain

E [at (xt − µ)] = φ1E [at (xt−1 − µ)] + E (a2
t ) = E (a2

t ) = σ 2
a ,

where σ 2
a is the variance of at . Multiplying Equation (2.10) by (xt−ℓ − µ), taking

expectation, and using the prior result, we have

γℓ =
{

φ1γ1 + σ 2
a if ℓ = 0

φ1γℓ−1 if ℓ> 0,

where we use γℓ = γ−ℓ. Consequently, for a weakly stationary AR(1) model in
Equation (2.8), we have

Var(xt ) = γ0 = σ 2

1 − φ2
1

and γℓ = φ1γℓ−1, for ℓ> 0.
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From the latter equation, the ACF of xt satisfies

ρℓ = φ1ρℓ−1, for ℓ> 0.

Because ρ0 = 1, we have ρℓ = φℓ
1. This result says that the ACF of a weakly station-

ary AR(1) series decays exponentially with rate φ1 and starting value ρ0 = 1. For a
positive φ1, the plot of ACF of an AR(1) model shows a nice exponential decay. For
a negative φ1, the plot consists of two alternating exponential decays with rate φ2

1 .
Figure 2.8 shows the ACF of two AR(1) models with φ1 = 0.8 and φ1 = −0.8.

AR(2) Model. An AR(2) model assumes the form

xt = φ0 + φ1xt−1 + φ2xt−2 + at . (2.12)

Using the same technique as that of the AR(1) case, we obtain

E (xt ) = µ = φ0

1 − φ1 − φ2

provided that φ1 + φ2 ̸= 1. Using φ0 = (1 − φ1 − φ2)µ, we can rewrite the AR(2)
model as

(xt − µ) = φ1(xt−1 − µ) + φ2(xt−2 − µ) + at .
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Figure 2.8. The autocorrelation function of an AR(1) model: (a) for φ1 = 0.8 and (b) for φ1 =
−0.8.
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Multiplying the prior equation by (xt−ℓ − µ), we have

(xt−ℓ − µ)(xt − µ) = φ1(xt−ℓ − µ)(xt−1 − µ)

+ φ2(xt−ℓ − µ)(xt−2 − µ) + (xt−ℓ − µ)at .

Taking expectation and using E [(xt−ℓ − µ)at ] = 0 for ℓ> 0, we obtain

γℓ = φ1γℓ−1 + φ2γℓ−2, for ℓ> 0.

This result is referred to as the moment equation of a stationary AR(2) model. Dividing
the above equation by γ0, we have the property

ρℓ = φ1ρℓ−1 + φ2ρℓ−2, for ℓ> 0, (2.13)

for the ACF of xt . In particular, the lag-1 ACF satisfies

ρ1 = φ1ρ0 + φ2ρ−1 = φ1 + φ2ρ1.

Therefore, for a stationary AR(2) series xt , we have ρ0 = 1,

ρ1 = φ1

1 − φ2

ρℓ = φ1ρℓ−1 + φ2ρℓ−2, ℓ ≥ 2.

The result of Equation (2.13) says that the ACF of a stationary AR(2) series satisfies
the second-order difference equation

(1 − φ1B − φ2B2)ρℓ = 0,

where B is called the backshift operator such that Bρℓ = ρℓ−1. This difference
equation determines the properties of the ACF of a stationary AR(2) time series. It
also determines the behavior of the forecasts of xt . In the time series literature, some
people use the notation L instead of B for the backshift operator. Here, L stands for
lag operator. For instance, Lxt = xt−1 and Lψk = ψk−1.

Corresponding to the prior difference equation, there is a second-order polynomial
equation

1 − φ1z − φ2z 2 = 0. (2.14)

Solutions of this equation are

z =
φ1 ±

√
φ2

1 + 4φ2

−2φ2
.
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In the time series literature, inverses of the two solutions are referred to as the
characteristic roots of the AR(2) model. Denote the two characteristic roots by ω1
and ω2. If both ωi are real valued, then the second-order difference equation of the
model can be factored as (1 − ω1B)(1 − ω2B), and the AR(2) model can be regarded
as an AR(1) model operates on top of another AR(1) model. The ACF of xt is then
a mixture of two exponential decays. If φ2

1 + 4φ2 < 0, then ω1 and ω2 are complex
numbers (called a complex conjugate pair), and the plot of ACF of xt would show
a picture of damping sine and cosine waves. In business and economic applications,
complex characteristic roots are important. They give rise to the behavior of business
cycles. It is then common for economic time series models to have complex-valued
characteristic roots. For an AR(2) model in Equation (2.12) with a pair of complex
characteristic roots, the average length of the stochastic cycles is

k = 2π

cos−1[φ1/(2
√

−φ2)]
,

where the cosine inverse is stated in radian. If one writes the complex solutions as
a ± bi , where i =

√
−1, then we have φ1 = 2a , φ2 = −(a2 + b2), and

k = 2π

cos−1(a/
√

a2 + b2)
,

where
√

a2 + b2 is the absolute value of a ± bi . See Example 2.3 for an illustration.
Figure 2.9 shows the ACF of four stationary AR(2) models. Part (b) is the ACF of

the AR(2) model (1 − 0.6B + 0.4B2)xt = at . Because φ2
1 + 4φ2 = 0.36 + 4 × (−0.4)

= −1.24 < 0, this particular AR(2) model contains two complex characteristic roots,
and hence its ACF exhibits damping sine and cosine waves. The other three AR(2)
models have real-valued characteristic roots. Their ACFs decay exponentially.

Example 2.3. As an illustration, consider the quarterly growth rate of US gross
national product (GNP), seasonally adjusted, from the second quarter of 1947 to the
first quarter of 2010 for 252 observations. The log series of GNP, in billions of dollars,
and its growth rate are shown in Figure 2.10. A horizontal line of zero is added to
the time plot of the growth rate. The plot clearly shows that most of the growth rates
are positive and the largest drop in GNP occurred in the 2008 recession.

On the basis of the model building procedure of the next section, we employ an
AR(3) model for the data. The fitted model is

(1 − 0.438B − 0.206B2 + 0.156B3)(xt − 0.016) = at , σ̂a = 9.55 × 10−5. (2.15)

The standard errors of the estimates are 0.062, 0.067, 0.063, and 0.001, respectively.
See the attached R output for further information. Model (2.15) gives rise to a third-
order polynomial equation

1 − 0.438z − 0.206z 2 + 0.156z 3 = 0,
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Figure 2.9. The autocorrelation function of an AR(2) model: (a) φ1 = 1.2 and φ2 = −0.35,
(b) φ1 = 0.6 and φ2 = −0.4, (c) φ1 = 0.2 and φ2 = 0.35, and (d) φ1 = −0.2 and φ2 = 0.35.
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Figure 2.10. Time plots of US quarterly gross national product from 1947.I to 2010.I: (a) Log
GNP series and (b) growth rate. The data are seasonally adjusted and in billions of dollars.
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which has three solutions, namely, 1.616 + 0.864i , 1.616 − 0.864i , and −1.909. The
real solution corresponds to a factor [1 − (1/ − 1.909)z ] = (1 + 0.524z ) that shows
an exponentially decaying feature of the GNP growth rate. Focusing on the complex
conjugate pair 1.616 ± 0.864i , we obtain the absolute value

√
1.6162 + 0.8642 =

1.833 and

k = 2π

cos−1(1.616/1.833)
≈ 12.80.

Therefore, the fitted AR(3) model confirms the existence of business cycles in the US
economy, and the average length of the cycles is 12.8 quarters, which is about 3 years.
This result is reasonable as the US economy went through expansion and contraction
and the length of expansion is generally believed to be around 3 years. If one uses a
nonlinear model to separate US economy into “expansion” and “contraction” periods,
the data show that the average duration of contraction periods is about three quarters
and that of expansion periods is about 3 years; see, for instance, the analysis in Tsay
(2010, Chapter 4). The average duration of 12.8 quarters is a compromise between the
two separate durations. The periodic feature obtained here is common among growth
rates of national economies. For example, similar features can be found for many
economies in the Organization for Economic Cooperation and Development (OECD)
countries.

> da=read.table("q-gnp4710.txt",header=T)
> head(da)
Year Mon Day VALUE

1 1947 1 1 238.1
...

6 1948 4 1 268.7
> G=da$VALUE
> LG=log(G)
> gnp=diff(LG)
> dim(da)
[1] 253 4
> tdx=c(1:253)/4+1947 # create the time index
> par(mfcol=c(2,1))
> plot(tdx,LG,xlab=’year’,ylab=’GNP’,type=’l’)
> plot(tdx[2:253],gnp,type=’l’,xlab=’year’,ylab=’growth’)
> acf(gnp,lag=12)
> pacf(gnp,lag=12) # compute PACF
> m1=arima(gnp,order=c(3,0,0))
> m1
Call:
arima(x = gnp, order = c(3, 0, 0))

Coefficients:
ar1 ar2 ar3 intercept

0.4386 0.2063 -0.1559 0.0163
s.e. 0.0620 0.0666 0.0626 0.0012
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sigma^2 estimated as 9.549e-05:log likelihood=808.6,aic=-1607.1
> tsdiag(m1,gof=12) # model checking discussed later
> p1=c(1,-m1$coef[1:3]) # set-up the polynomial
> r1=polyroot(p1) # solve the polynomial equation
> r1
[1] 1.616116+0.864212i -1.909216-0.000000i 1.616116-0.864212i
> Mod(r1)
[1] 1.832674 1.909216 1.832674 # compute absolute values
> k=2*pi/acos(1.616116/1.832674) # compute length of the period
> k
[1] 12.79523

!

Stationarity. The stationarity condition of an AR(2) time series is that the abso-
lute values of its two characteristic roots are less than 1, that is, its two characteristic
roots are less than 1 in modulus. Equivalently, the two solutions of the character-
istic equation are greater than 1 in modulus. Under such a condition, the recursive
equation in Equation (2.13) ensures that the ACF of the model converges to 0 as the
lag ℓ increases. This convergence property is a necessary condition for a stationary
time series. In fact, the condition also applies to the AR(1) model, where the polyno-
mial equation is 1 − φ1z = 0. The characteristic root is w = 1/z = φ1, which must
be less than 1 in modulus for xt to be stationary. As shown before, ρℓ = φℓ

1 for a
stationary AR(1) model. The condition implies that ρℓ → 0 as ℓ → ∞.

AR(p) Model. The results of AR(1) and AR(2) models can readily be generalized
to the general AR(p) model in Equation (2.9). The mean of a stationary series is

E (xt ) = φ0

1 − φ1 − · · · − φp

provided that the denominator is not 0. The associated characteristic equation of the
model is

1 − φ1z − φ2z 2 − · · · − φpz p = 0.

If all the solutions of this equation are greater than 1 in modulus, then the series xt is
stationary. Again, inverses of the solutions are the characteristic roots of the model.
Thus, stationarity requires that all characteristic roots are less than 1 in modulus. For
a stationary AR(p) series, the ACF satisfies the difference equation

(1 − φ1B − φ2B2 − · · · − φpBp)ρℓ = 0, for ℓ> 0.

The plot of ACF of a stationary AR(p) model would then show a mixture of damping
sine and cosine patterns and exponential decays depending on the nature of its
characteristic roots.
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2.5.1 Properties of MA Models

Again, we focus on the simple MA(1) and MA(2) models. The results of MA(q)
models can easily be obtained by the same techniques.

Stationarity. MA models are always weakly stationary because they are finite
linear combinations of a white noise sequence for which the first two moments are
time invariant. For example, consider the MA(1) model in Equation (2.20). Taking
expectation of the model, we have

E (xt ) = c0,

which is time invariant. Taking the variance of Equation (2.20), we have

Var(xt ) = σ 2
a + θ2

1 σ 2
a = (1 + θ2

1 )σ 2
a ,

where we use the fact that at and at−1 are uncorrelated. Again, Var(xt ) is time invariant.
The prior discussion applies to general MA(q) models, and we obtain two general
properties. First, the constant term of an MA model is the mean of the series (i.e.,
E (xt ) = c0). Second, the variance of an MA(q) model is

Var(xt ) = (1 + θ2
1 + θ2

2 + · · · + θ2
q )σ 2

a .

Autocorrelation Function. Assume for simplicity that c0 = 0 for an MA(1)
model. Multiplying the model by xt−ℓ, we have

xt−ℓxt = xt−ℓat − θ1xt−ℓat−1.

Taking expectation, we obtain

γ1 = −θ1σ
2
a and γℓ = 0, for ℓ> 1.

Using the prior result and the fact that Var(xt ) = (1 + θ2
1 )σ 2

a , we have

ρ0 = 1, ρ1 = −θ1

1 + θ2
1

, and ρℓ = 0, for ℓ> 1.

Thus, for an MA(1) model, the lag-1 ACF is not 0, but all higher-order ACFs are 0.
In other words, the ACF of an MA(1) model cuts off at lag 1. For the MA(2) model
in Equation (2.21), the autocorrelation coefficients are

ρ1 = −θ1 + θ1θ2

1 + θ2
1 + θ2

2

, ρ2 = −θ2

1 + θ2
1 + θ2

2

, and ρℓ = 0, for ℓ> 2. (2.23)

Here, the ACF cuts off at lag 2. This property generalizes to other MA models. For
an MA(q) model, the lag-q ACF is not 0, but ρℓ = 0 for ℓ> q . Consequently, an
MA(q) series is only linearly related to its first q lagged values and hence is a “finite
memory” model.
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Invertibility. Rewriting a zero-mean MA(1) model as at = xt + θ1at−1, one can
use repeated substitutions to obtain

at = xt + θ1xt−1 + θ2
1 xt−2 + θ3

1 xt−3 + · · · .

This equation expresses the current shock at as a linear combination of the present
and past values of xt . Intuitively, θ

j
1 should go to 0 as j increases because the remote

return xt−j should have very little impact on the current shock, if any. Consequently,
for an MA(1) model to be plausible, we require |θ1| < 1. Such an MA(1) model is
said to be invertible. If |θ1| = 1, then the MA(1) model is noninvertible. See Tsay
(2010, Chapter 2) for further discussion on invertibility.

2.5.2 Identifying MA Order

The ACF is useful in identifying the order of an MA model. For a time series xt with
ACF ρℓ, if ρq ̸= 0, but ρℓ = 0 for ℓ> q , then xt follows an MA(q) model.

Figure 2.14 shows the time plot of monthly simple returns of the CRSP equal-
weighted index from January 1926 to December 2008 and the sample ACF of the
series. The two dashed lines shown on the ACF plot denote the two standard error
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Figure 2.14. Time plot and sample autocorrelation function of monthly simple returns of the
CRSP equal-weighted index from January 1926 to December 2008.
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limits. It is seen that the series has significant ACF at lags 1, 3, and 9. There are some
marginally significant ACF at higher lags, but we do not consider them here. On the
basis of the sample ACF, the following MA(9) model

xt = c0 + at − θ1at−1 − θ3at−3 − θ9at−9

is identified for the series. Note that, unlike the sample PACF, sample ACF provides
information on the nonzero MA lags of the model. To see this, consider, for example, a
simple MA(2) model with θ1 = 0. The model is xt = c0 + at − θ2at−2. Using Equation
(2.23) or via direct evaluation, the ACF of the model is

ρ0 = 1, ρ1 = 0, ρ2 = −θ2

1 + θ2
2

, and ρj = 0 for j > 2.

Therefore, for this particular case, ACF provides the exact information on the structure
of the model.

2.5.3 Estimation

Maximum likelihood estimation is commonly used to estimate MA models. There
are two approaches for evaluating the likelihood function of an MA model. The
first approach assumes that the initial shocks (i.e., at for t ≤ 0) are 0. As such, the
shocks needed in likelihood function calculation are obtained recursively from the
model, starting with a1 = x1 − c0 and a2 = x2 − c0 + θ1a1. This approach is referred
to as the conditional likelihood method and the resulting estimates the conditional
maximum likelihood estimates. The second approach treats the initial shocks at , t ≤ 0
as additional parameters of the model and estimate them jointly with other parameters.
This approach is referred to as the exact likelihood method . The exact likelihood
estimates are preferred over the conditional ones, especially when the MA model
is close to being noninvertible. The exact method, however, requires more intensive
computation. If the sample size is large, then the two types of maximum likelihood
estimates are close to each other. For details of conditional and exact likelihood
estimates of MA models, readers are referred to Box et al. (1994) or Tsay (2010,
Chapter 8).

For illustration, consider the monthly simple return series of the CRSP equal-
weighted index and the specified MA(9) model. The conditional maximum likelihood
method produces the fitted model

xt = 0.012 + at + 0.189at−1 − 0.121at−3 + 0.122at−9, σ̂a = 0.0714, (2.24)

where standard errors of the coefficient estimates are 0.003, 0.031, 0.031, and 0.031,
respectively. The Ljung–Box statistics of the residuals give Q(12) = 17.5 with
p-value 0.041, which is based on an asymptotic chi-squared distribution with 9 degrees
of freedom. The model needs some refinements in modeling the linear dynamic


