Exercise 1 (6 points). Let X and Y be two independent $Ber(\frac{1}{2})$ random variables. Define the random variables U and V by

\[U = X + Y \quad V = |X - Y| \]

a) Determine the joint and marginal distributions of U and V.
b) Find out whether U and V are dependent or independent
c) Determine the covariance $\text{Cov}(U,V)$ and the correlation coefficient $\text{Cor}(U,V)$

Exercise 2 (6 points). Suppose that x_1, x_2, \ldots, x_n is a dataset, which is a realization of a random sample from a Rayleigh distribution, which is a continuous distribution with probability density function:

$$ f_\theta = \frac{x}{\theta^2} e^{-\frac{x^2}{2\theta^2}} \quad \text{for} \quad x \geq 0. $$

In this case what is the maximum likelihood estimate of θ?

Exercise 3 (6 points). One is given a number t, which is the realization of a random variable T with an $N(\mu,1)$ distribution. To test $H_0: \mu = 0$ against $H_1: \mu \neq 0$ one uses T as the test statistic. One decides to reject H_0 in favor of H_1 if $|t| \leq 2$.

a) Compute the probability of committing a type I error.
b) Compute the probability of committing a type II error if the true value of μ is 1.

Use the Table B.1 (attached) from the textbook for the tail probability of normal random variables.

Exercise 4 (6 points). Consider a data frame of students:

```r
d <- data.frame(id, enrolledYear, cfu0, cfu1, cfu2, cfu3, cfu4, cfu5, cfu6, cfu7, cfu8, cfu9)
```

where id is the student ID (matricola), enrolledYear is the year of enrollment (e.g., 2014), cfu0 is the number of credits given in the year of enrollment (e.g., 30 in 2014), cfu1 is the number of credits given in the year of enrollment+1 (e.g., 24 in 2015), etc. Write an R function that transforms d into a data frame of the form:

```r
d1 <- data.frame(id, year, cfu, inc)
```

where a row contains id the student ID (matricola), a year (e.g., 2015), cfu is the number of credits (if non-zero) given in that year (e.g., 24), and inc is the difference of credits wrt the previous year (e.g., -6).

Exercise 5 (6 points). Code in R bootstrapped confidence intervals for the test of mean.
Exercise 1. (a) see solution of Ex. 9.6 (a) at page 437 of [B1].
(b) Dependent, because for e.g.,
\[P(U = 0, V = 0) = \frac{1}{4} \neq P(U = 0)P(V = 0) = \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8} \]
(c) We have
\[E[U] = 0 \cdot \frac{1}{4} + 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} = 1 \]
\[E[V] = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2} \]
\[E[UV] = 0P(U = 0 \land V = 0) + 1P(U = 1, V = 1) + 2P(U = 1, V = 2) = \frac{1}{2} \]
Therefore
\[Cov(U, V) = E[UV] - E[U]E[V] = \frac{1}{2} - \frac{1}{2} = 0 \]
and then \(Cor(U, V) = 0 \) as well.

Exercise 2. The likelihood is
\[L = \prod_{i=1}^{n} \frac{x_i}{\theta^2} e^{-\frac{x_i^2}{2\theta^2}} \]
and then the log-likelihood is
\[\log L = \sum_{i=1}^{n} \left(\log x_i - 2\log \theta - \frac{1}{2\theta^2} x_i^2 \right) \]
The (log-)likelihood has maximum when the derivative (w.r.t. \(\theta \)) is zero, i.e., when
\[\frac{\partial \log L}{\partial \theta} = -\frac{2n}{\theta} + \frac{1}{\theta^3} \sum_{i=1}^{n} x_i^2 = 0 \]
which occurs for
\[\theta = \sqrt{\frac{1}{2n} \sum_{i=1}^{n} x_i^2} \]

Exercise 3
(a) A type I error is done when \(H_0 \) is true but it is rejected. Hence it is the probability \(P_{H_0}(t|>2) = 2 \cdot P_{H_0}(t|>2) = 0.0228 = 0.0456 \), where \(P_{H_0}(t|>2) = 1 - \Phi(2) = 0.0228 \) accordingly to the distribution of \(N(0, 1) \).
(b) A type II error is done if the true value of \(\mu \) is 1 but \(H_0 \) is not rejected. Thus it is \(P_{H_1}(t|\leq 2) = P_{H_1}(|z+1|\leq 2) = P_{H_1}(|-3|\leq z \leq 1) \) where \(Z = T - 1 \sim N(0, 1) \). Therefore, \(P_{H_1}(-3\leq z \leq 1) = P_{H_1}(z|>3) + (1 - P_{H_1}(z|\geq 1)) = 0.0013 + (1 - 0.1587) = 0.84 \).
Exercise 4

transform = function(d) {
 # calculate increments
 incs = d[,3:12]
 incs = incs - cbind(0, incs[-10])
 names(incs) = c("inc0", "inc1", "inc2", "inc3", "inc4", "inc5", "inc6", "inc7", "inc8", "inc9")
 d0 = cbind(d, incs)
 # init result
 d1 <- data.frame()
 for(i in 0:9) {
 # select a cfu and inc
 tmp = d0[c("id", "enrolledYear", paste("cfu", i, sep=""), paste("inc", i, sep=""))]
 # rename cols
 names(tmp) = c("id", "year", "cfu", "inc")
 # calculate time
 tmp$year = tmp$year + i
 # append
 d1 = rbind(d1, tmp)
 }
 return(d1)
}

Exercise 5

data=rnorm(20) # example input
actual answer
library(boot)
b <- boot(data, function(x,d) mean(x[d]), R = 1000)
quantile(b$t, c(0.025, 0.975))
or
boot.ci(b, type = "norm")

References
