Statistical Methods for Data Science
Lesson 23 - Two sample testing of the mean, and F-test.

Salvatore Ruggieri

Department of Computer Science
University of Pisa
salvatore.ruggieri@unipi.it
Tests and confidence intervals for classifier performance

The Caret package

1. Define sets of model parameter values to evaluate
2. for each parameter set do
3. for each resampling iteration do
4. Hold-out specific samples
5. [Optional] Pre-process the data
6. Fit the model on the remainder
7. Predict the hold-out samples
8. end
9. Calculate the average performance across hold-out predictions
10. end
11. Determine the optimal parameter set
12. Fit the final model to all the training data using the optimal parameter set
The binomial test

- Dataset x_1, \ldots, x_n realization of $X_1, \ldots, X_n \sim Ber(\theta)$
- $H_0 : \theta = \theta_0 \quad H_1 : \theta \neq \theta_0$
- Test statistics: $B = \sum_{i=1}^{n} X_i \sim Bin(n, \theta_0)$
 [Asymmetric distribution]
- b-value is $\sum_{i=1}^{n} x_i$
- Critical values (exact test):
 \[
P(B \leq l) = \sum_{i=0}^{l} \binom{n}{i} \theta_0^i (1 - \theta_0)^{n-1} = P(B \geq u) = \sum_{i=u}^{n} \binom{n}{i} \theta_0^i (1 - \theta_0)^{n-1} = \alpha/2
 \]
- Normal approximation $Bin(n, \theta_0) \approx N(n\theta_0, n\theta_0(1 - \theta_0))$
 - scaled test statistics:
 \[
 B^* = \frac{B - n\theta_0}{\sqrt{n\theta_0(1 - \theta_0)}} \sim N(0, 1)
 \]
 - use z-test with $\sigma^2 = \theta_0(1 - \theta_0)$ because $B^* = \frac{B/n - \theta_0}{\sqrt{\theta_0(1 - \theta_0)/n}} = \frac{\bar{X}_n - \theta_0}{\sigma/\sqrt{n}}$
 - or even t-test for large samples

See R script
Two sample test of the mean

- Dataset x_1, \ldots, x_n realization of $X_1, \ldots, X_n \sim F_1$ with $E[X_i] = \mu_1$ and $Var(X_i) = \sigma_X^2$
- Dataset y_1, \ldots, y_m realization of $Y_1, \ldots, Y_m \sim F_2$ with $E[Y_i] = \mu_2$ and $Var(Y_i) = \sigma_Y^2$
 - measurements for control and (medical) treatment groups of patients
 - performances on benchmark datasets/folds of two different classifiers

$H_0 : \mu_1 = \mu_2 \quad H_1 : \mu_1 \neq \mu_2$

Test statistics: $T = \frac{\bar{X}_n - \bar{Y}_m}{\sqrt{\text{Var}(\bar{X}_n - \bar{Y}_m)}} = \frac{\bar{X}_n - \bar{Y}_m}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}}$

We distinguish a few cases:
- F_1, F_2 are normal distributions
 - σ_X^2 and σ_Y^2 are known
 - σ_X^2 and σ_Y^2 are unknown and $\sigma_X^2 = \sigma_Y^2$
 - σ_X^2 and σ_Y^2 are unknown and $\sigma_X^2 \neq \sigma_Y^2$ [z-test] [t-test] [Welch test]
- F_1, F_2 are general distributions
 - Large sample
 - $F_1(x - \Delta) = F_2(x)$ location-shift
 - Bootstrap two sample test
- Paired data [paired t-test]
Normal data with known σ^2_X and σ^2_Y: z-test

- $X_1, \ldots, X_n \sim N(\mu_1, \sigma^2_X)$ and $Y_1, \ldots, Y_m \sim N(\mu_2, \sigma^2_Y)$
- $H_0: \mu_1 = \mu_2$
- $H_1: \mu_1 \neq \mu_2$
- $100(1 - \alpha)\%$, e.g., 95% or 99% or 99.9%
 - i.e., $\alpha = 0.05$ or $\alpha = 0.01$ or $\alpha = 0.001$
- $Z = \frac{\bar{X}_n - \bar{Y}_m}{\sqrt{\frac{\sigma^2_X}{n} + \frac{\sigma^2_Y}{m}}} \sim N(0, 1)$ test statistics when H_0 is true
- z value is $\frac{\bar{X}_n - \bar{Y}_m}{\sqrt{\frac{\sigma^2_X}{n} + \frac{\sigma^2_Y}{m}}}$ and $p\text{-value } p = P(|Z| \geq |z|) = 2(1 - \Phi(|z|))$
- $P(Z \leq -z_{\alpha/2}) = \alpha/2$ and $P(Z \geq z_{\alpha/2}) = \alpha/2$
- Output of the test at confidence level $100(1 - \alpha)\%$ using critical values
 - $|z| \geq z_{\alpha/2}$: H_0 is rejected
 - otherwise: H_0 cannot be rejected

See R script
Unknown $\sigma^2_X = \sigma^2_Y = \sigma^2$ and pooled variance

- We need to estimate $\text{Var}(\bar{X}_n - \bar{Y}_m) = \sigma^2 \left(\frac{1}{n} + \frac{1}{m} \right)$

- Recall

$$S_X = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2 \quad \text{and} \quad S_Y = \frac{1}{m-1} \sum_{i=1}^{m} (Y_i - \bar{Y}_m)^2$$

are unbiased estimators of σ^2_X and σ^2_Y

- The pooled variance:

$$S_p^2 = \frac{(n-1)S_X^2 + (m-1)S_Y^2}{n + m - 2} \left(\frac{1}{n} + \frac{1}{m} \right) = \frac{\sum_{i=1}^{n}(X_i - \bar{X}_n)^2 + \sum_{i=1}^{m}(Y_i - \bar{Y}_m)^2}{n + m - 2} \left(\frac{1}{n} + \frac{1}{m} \right)$$

is an unbiased estimator of $\sigma^2 \left(\frac{1}{n} + \frac{1}{m} \right)$
Testing variances for normal data: F-test

- $X_1, \ldots, X_n \sim N(\mu_1, \sigma_X^2)$ and $Y_1, \ldots, Y_m \sim N(\mu_2, \sigma_Y^2)$
- $H_0 : \sigma_X^2 = \sigma_Y^2$
- $H_1 : \sigma_X^2 \neq \sigma_Y^2$ [Two-tailed test]
- $100(1 - \alpha)\%$, e.g., 95% or 99% or 99.9% [Confidence level]
 - i.e., $\alpha = 0.05$ or $\alpha = 0.01$ or $\alpha = 0.001$ [Significance level]
- $F = \frac{S_X^2}{S_Y^2} \sim F(n - 1, m - 1)$ test statistics when H_0 is true [Fisher-Snedecor distribution]
- f value is $\frac{S_X^2}{S_Y^2}$ and p-value is $p = 2 \min \{P(F \leq f), 1 - P(F \leq f)\}$ [Asymmetric]
- $P(F \leq l) = \alpha/2$ and $P(F \geq u) = \alpha/2$ [Critical values]
- Output of the test at confidence level $100(1 - \alpha)\%$ using critical values
 - $t \leq l$ or $t \geq u : H_0$ is rejected [Critical region]
 - otherwise: H_0 cannot be rejected

See R script
Normal data with unknown $\sigma^2_X = \sigma^2_Y = \sigma^2$: t-test

- $X_1, \ldots, X_n \sim N(\mu_1, \sigma^2)$ and $Y_1, \ldots, Y_m \sim N(\mu_2, \sigma^2)$
- $H_0 : \mu_1 = \mu_2$
- $H_1 : \mu_1 \neq \mu_2$
- $100(1 - \alpha)\%$, e.g., 95% or 99% or 99.9%
 - i.e., $\alpha = 0.05$ or $\alpha = 0.01$ or $\alpha = 0.001$
- $T_p = \frac{\bar{X}_n - \bar{Y}_m}{S_p} \sim t(n + m - 2)$ test statistics when H_0 is true
- t value is $\frac{\bar{x}_n - \bar{y}_m}{\sqrt{\frac{(n-1)s_X^2 + (m-1)s_Y^2}{n+m-2}\left(\frac{1}{n} + \frac{1}{m}\right)}}$ and p-value $p = P(|T_p| \geq |t|)$
- $P(T_p \leq -t_{n+m-2, \alpha/2}) = \alpha/2$ and $P(T_p \geq t_{n+m-2, \alpha/2}) = \alpha/2$ [Critical values]
- Output of the test at confidence level $100(1 - \alpha)\%$ using critical values
 - $|t| \geq t_{n+m-2, \alpha/2}$: H_0 is rejected
 - otherwise: H_0 cannot be rejected [Critical region]

See R script
Normal data with unknown $\sigma^2_X \neq \sigma^2_Y$

- The nonpooled variance:

 $$S^2_d = \frac{S^2_X}{n} + \frac{S^2_Y}{m}$$

 is an unbiased estimator of $\text{Var}(\bar{X}_n - \bar{Y}_m) = \frac{\sigma^2_X}{n} + \frac{\sigma^2_Y}{m}$

- The test statistics $T_d = \frac{\bar{X}_n - \bar{Y}_m}{S_d}$ is not t-distributed!

- Possible solution: empirical bootstrap (see textbook Sect. 28.3)

- Another solution: Welch t-test
Normal data with unknown $\sigma^2_X \neq \sigma^2_Y$: Welch t-test

• $X_1, \ldots, X_n \sim N(\mu_1, \sigma^2_X)$ and $Y_1, \ldots, Y_m \sim N(\mu_2, \sigma^2_Y)$

• $H_0 : \mu_1 = \mu_2$

• $H_1 : \mu_1 \neq \mu_2$

• $100(1 - \alpha)\%$, e.g., 95% or 99% or 99.9%
 ▶ i.e., $\alpha = 0.05$ or $\alpha = 0.01$ or $\alpha = 0.001$

• $T_d = \frac{\bar{X}_n - \bar{Y}_m}{S_d} \approx t(\nu)$ test statistics when H_0 is true, with $\nu = \frac{(\frac{1}{n} + \frac{u}{m})^2}{\frac{1}{n^2(n-1)} + \frac{u^2}{m^2(m-1)}}$ and $u = \frac{s^2_Y}{s^2_X}$

• t value is $\frac{\bar{X}_n - \bar{Y}_m}{\sqrt{\frac{s^2_X}{n} + \frac{s^2_Y}{m}}}$ and p-value $p = P(|T_d| \geq |t|)$

• $P(T_d \leq -t_{\nu,\alpha/2}) = \alpha/2$ and $P(T_d \geq t_{\nu,\alpha/2}) = \alpha/2$ [Critical values]

• Output of the test at confidence level $100(1 - \alpha)\%$ using critical values
 ▶ $|t| \geq t_{\nu,\alpha/2}$: H_0 is rejected
 ▶ otherwise: H_0 cannot be rejected [Critical region]

See R script
General data, large sample: t-test

- $X_1, \ldots, X_n \sim F_1$ and $Y_1, \ldots, Y_m \sim F_2$
- $H_0 : \mu_1 = \mu_2$
- $H_1 : \mu_1 \neq \mu_2$
- 100$(1 - \alpha)$%, e.g., 95% or 99% or 99.9%
 - i.e., $\alpha = 0.05$ or $\alpha = 0.01$ or $\alpha = 0.001$
- $T_d = \frac{\bar{X}_n - \bar{Y}_m}{S_d} \approx N(0, 1)$
- t value is $\frac{\bar{X}_n - \bar{Y}_m}{\sqrt{\frac{s^2_X}{n} + \frac{s^2_Y}{m}}}$ and p-value $p = P(|T_d| \geq |t|)$
- $P(T_d \leq -z_{\alpha/2}) = \alpha/2$ and $P(T_d \geq z_{\alpha/2}) = \alpha/2$
- Output of the test at confidence level 100$(1 - \alpha)$% using critical values
 - $|t| \geq z_{\alpha/2}$: H_0 is rejected
 - otherwise: H_0 cannot be rejected

See R script
• Also called as: **Mann–Whitney U test**, Mann–Whitney–Wilcoxon (MWW), or Wilcoxon–Mann–Whitney test

• \(X_1, \ldots, X_n \sim F_1 \) and \(Y_1, \ldots, Y_m \sim F_2 \)

• \(H_0 : \mu_1 = \mu_2 \)
 - actually, \(H_0 : F_1(x - \Delta) = F_2(x) \) where \(\Delta = \mu_2 - \mu_1 \)
 - we should test that empirical distributions have **the same shape**

• \(H_1 : \mu_1 \neq \mu_2 \)
 - \(W = \sum_{i=1}^{n} S_i \sim W(n, m) \) when \(H_0 \) is true
 - where \(S_i \) is the rank of \(X_i \) in \(\text{sorted}(X_1, \ldots, X_n, Y_1, \ldots, Y_m) \)
 - \(\text{pwilcox} \) in R, or large sample Normal approx, or \(U = W - \frac{n(n+1)}{2} \) statistic

• \(w \) value is \(\sum_{i=1}^{n} s_i \) and \(p \)-value \(p = P(|W| \geq |w|) \)

• \(P(W \leq -w_{\alpha/2}) = \alpha/2 \) and \(P(T_p \geq w_{\alpha/2}) = \alpha/2 \)
 - [Critical values]

• Output of the test at confidence level \(100(1 - \alpha)\% \) using critical values
 - \(|w| \geq w_{\alpha/2} : H_0 \) is rejected
 - otherwise: \(H_0 \) cannot be rejected
 - [Critical region]

See R script
General data: bootstrap test

• Equal variance \((\sigma_X^2 = \sigma_Y^2)\)
 ▶ bootstrap of pooled studentized mean difference
 \[
 t^*_p = \frac{(\bar{x}_n^* - \bar{y}_m^*) - (\bar{x}_n - \bar{y}_m)}{s^*_p}
 \]

• Non-equal variance \((\sigma_X^2 \neq \sigma_Y^2)\)
 ▶ bootstrap of nonpooled studentized mean difference
 \[
 t^*_d = \frac{(\bar{x}_n^* - \bar{y}_m^*) - (\bar{x}_n - \bar{y}_m)}{s^*_d}
 \]

See R script
Paired data

- Datasets x_1, \ldots, x_n and y_1, \ldots, y_n are measurements for the same experimental unit
 - unit: a person before and after a (medical) treatment
 - unit: a dataset/fold used to train two different classifiers
- The theory is essentially based on taking differences $x_1 - y_1, \ldots, x_n - y_n$ and thus reducing the problem to that of a one-sample test.
- $H_0 : \mu_1 = \mu_2 \Rightarrow H_0 : \mu_1 - \mu_2 = 0$
- Advantage: better power / lower Type II risk of the test w.r.t. unpaired version
 - $P_{\text{paired}}(p \leq \alpha | H_1) \geq P_{\text{unpaired}}(p \leq \alpha | H_1)$

See R script