Parametric bootstrap principle

- Let $X_1, \ldots, X_n \sim F(\gamma)$ be a random sample
 - with known F but unknown parameter γ
- Estimator $T = h(X_1, \ldots, X_n)$, e.g., $\bar{X}_n = (X_1 + \ldots + X_n)/n$
- From a dataset x_1, \ldots, x_n, we can
 - derive a point estimate $\hat{\theta} = h(x_1, \ldots, x_n)$
 - or, derive an estimate $\hat{\gamma}$ of γ
- From $F(\hat{\gamma})$ we can generate (a lot of) bootstrap samples x_1^*, \ldots, x_n^*
 - as realizations of $X_1^*, \ldots, X_n^* \sim F(\hat{\gamma})$
 - and then (a lot of) bootstrap point estimates $\hat{\theta}^* = h(x_1^*, \ldots, x_n^*)$
- By the LLN, the empirical distribution of $\hat{\theta}^*$ will approximate the distribution of $T^* = h(X_1^*, \ldots, X_n^*)$ and then of T
Use the empirical distribution of $\delta^* = \bar{x}^* - \mu_{\hat{\theta}}$ for estimating

- confidence interval (c_l, c_u) for $\delta = \bar{x}_n - \mu$ as $(q_{\alpha/2}, q_{1-\alpha/2})$ of δ^* distribution
- $c_l \leq \delta = \bar{x}_n - \mu \leq c_u$ implies $\bar{x}_n - c_u \leq \mu \leq \bar{x}_n - c_l$, i.e. c.i. for μ is $(\bar{x}_n - c_u, \bar{x}_n - c_l)$

See R script
Application: distribution fitting

- Consider a dataset \(x_1, \ldots, x_n \sim F \)
- Is the dataset from an \(\text{Exp}(\lambda) \) for some \(\lambda \)? I.e., is it \(F = \text{Exp}(\lambda) \)?
- We estimate \(\hat{\lambda} = 1/\bar{x}_n \)
- We measure how close is the dataset to the distribution as:

\[
 t_{ks} = \sup_{a \in \mathbb{R}} |F_n(a) - F_{\hat{\lambda}}(a)|
\]

where:
- \(F_n(a) \) is the empirical cumulative distribution of \(x_1, \ldots, x_n \)
- \(F_{\hat{\lambda}}(a) = 1 - e^{\hat{\lambda}a} \), for \(a \geq 0 \), is the distribution function of \(\text{Exp}(\hat{\lambda}) \)
- \(t_{ks} \) is called the Kolmogorov-Smirnov distance

- if \(F = \text{Exp}(\lambda) \) then both \(F_n \approx F \) and \(F_{\hat{\lambda}} \approx F \), and then \(F_n \approx F_{\hat{\lambda}} \), so that \(t_{ks} \) is small
- if \(F \neq \text{Exp}(\lambda) \) then \(F_n \approx F \neq \text{Exp}(\lambda) \approx F_{\hat{\lambda}} \), so that \(t_{ks} \) is large

See R script
Application: distribution fitting

- For the software dataset from the textbook
 - $\hat{\lambda} = 0.0015$ and $t_{ks} = 0.17$
- Is $t_{ks} = 0.17$ expected or an extreme value?
- Let’s study the distribution of the bootstrap estimator:

 $$ T_{ks} = \sup_{a \in \mathbb{R}} |F_n^*(a) - \hat{F}_n^*(a)| $$

 where:
 - $X_1^*, \ldots, X_n^* \sim \text{Exp}(\hat{\lambda})$ is a bootstrap sample
 - $F_n^*(a)$ is the empirical cumulative distribution of the bootstrap sample
 - $\hat{\Lambda}^* = 1/\bar{X}_n^*$

- It turns out $P(T_{ks} > 0.17) \approx 0$, unlikely that $\text{Exp}()$ is the right model

See R script
Hypothesis testing

• In the previous application, we tested how likely is \(\exp() \) for the given dataset
• In general, hypotheses testing consists of contrasting two conflicting theories (hypotheses) based on observed data
• Consider the German tank problem:
 ▶ Military intelligence states that \(N = 350 \) tanks were produced \([H0 \text{ or null hypothesis}]\)
 ▶ Alternative hypothesis:
 \(N < 350 \) (one-tailed or one-sided test), or \(N \neq 350 \) (two-tailed or two-sided test)
 \([H1 \text{ hypothesis}]\)
 ▶ Observed serial tank id’s: 61 19 56 24 16
• Statistical test: How likely is the observed data under the null hypothesis?
 ▶ If it is NOT (sufficiently) likely, we reject the null hypothesis in favor of H1
 ▶ If it is (sufficiently) likely, we cannot reject the null hypothesis
• Why 'we cannot reject the null hypothesis' and not instead 'we accept the null hypothesis'?
 ▶ Other hypotheses, e.g., \(N = 349 \) or \(N = 351 \), could also not be rejected
 ▶ We cannot say which of \(N = 349 \) or \(N = 350 \) or \(N = 351 \) is actually true
Test statistic

In the German tank example:
- $H_0 : N = 350$
- $H_1 : N < 350$
- Observed serial tank id’s: 61 19 56 24 16

- We use $T = \max \{X_1, X_2, X_3, X_4, X_5\}$

- If H_0 is true, i.e., $N = 350$, then $E[T] = \frac{5}{6}(N + 1) = \frac{5}{6} \cdot 351 = 292.5$

<table>
<thead>
<tr>
<th>Values in favor of H_1</th>
<th>Values in favor of H_0</th>
<th>Values against both H_0 and H_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>292.5</td>
<td>350</td>
</tr>
</tbody>
</table>

- If H_0 is true, we have:

$$P(T \leq 61) = P(\max \{X_1, X_2, X_3, X_4, X_5\} \leq 61) = \frac{61}{350} \cdot \frac{60}{349} \cdots \frac{57}{346} = 0.00014$$

very unlikely: either we are unfortunate, or H_0 can be rejected
Statistical test of hypothesis: one-tailed

- **H_0: $\theta = \nu$**
- **H_1: $\theta < \nu$** (resp. **H_1: $\theta > \nu$**)
- **$100(1 - \alpha)\%$, e.g., 95% or 99% or 99.9%**
 ▶ i.e., $\alpha = 0.05$ or $\alpha = 0.01$ or $\alpha = 0.001$
- **$T = h(X_1, \ldots, X_n)$ test statistics when H_0 is true**
- **x_1, \ldots, x_n: observed dataset**
- **c_l s.t. $P(T \leq c_l) = \alpha$** (resp. c_u s.t. $P(T \geq c_u) = \alpha$)
- **Output of the test at confidence level $100(1 - \alpha)\%$ using critical values**
 ▶ $h(x_1, \ldots, x_n) \leq c_l$ (resp. $h(x_1, \ldots, x_n) \geq c_u$): H_0 is rejected
 ▶ otherwise: H_0 cannot be rejected
Statistical test of hypothesis: one-tailed

- H_0: $\theta = \nu$
- H_1: $\theta < \nu$ (resp. H_1: $\theta > \nu$) [Null hypothesis]
- 100$(1 - \alpha)$%, e.g., 95% or 99% or 99.9% [Confidence level]
 - i.e., $\alpha = 0.05$ or $\alpha = 0.01$ or $\alpha = 0.001$
- $T = h(X_1, \ldots, X_n)$ test statistics when H_0 is true
- x_1, \ldots, x_n: observed dataset
- $p = P(T \leq h(x_1, \ldots, x_n))$ (resp. $p = P(T \geq h(x_1, \ldots, x_n))$) [p-value]
 - evidence against H_0 - the smaller the stronger evidence
- Output of the test at confidence level 100$(1 - \alpha)$% using p-values
 - $p \leq \alpha$: H_0 is rejected
 - otherwise: H_0 cannot be rejected
Statistical test of hypothesis: two-tailed

- H_0: $\theta = \nu$
- H_1: $\theta \neq \nu$
- $100(1 - \alpha)\%$, e.g., 95% or 99% or 99.9%
 - i.e., $\alpha = 0.05$ or $\alpha = 0.01$ or $\alpha = 0.001$
- $T = h(X_1, \ldots, X_n)$ test statistics when H_0 is true
- x_1, \ldots, x_n: observed dataset
- c_l s.t. $P(T \leq c_l) = \alpha/2$ and c_u s.t. $P(T \geq c_u) = \alpha/2$
- Output of the test at confidence level $100(1 - \alpha)\%$ using critical values
 - $h(x_1, \ldots, x_n) \leq c_l$ or $h(x_1, \ldots, x_n) \geq c_u$: H_0 is rejected
 - otherwise: H_0 cannot be rejected

[Null hypothesis]
[Two-tailed test]
[Confidence level]
[Significance level]
[Critical values]
[Critical region]
Type I and Type II errors

• Type I error: we falsely reject H_0
 ▶ E.g., convicting an innocent defendant
 ▶ we reject H_0 when $p < \alpha$, so this error occur with probability $100\alpha\%$
 ▶ this error can be controlled by setting the significance level α to the largest acceptable value
 ▶ how much is an acceptable value?
 ▶ A possible solution is to solely report the p-value, which conveys the maximum amount of information and permits decision makers to choose their own level

• Type II error: we falsely do not reject H_0
 ▶ E.g., acquitting a criminal
 ▶ $1 - \beta = P(\text{Reject}H_0|H_1 \text{ is true})$ is called the power of the test