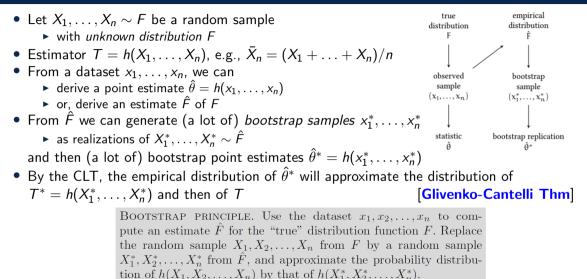
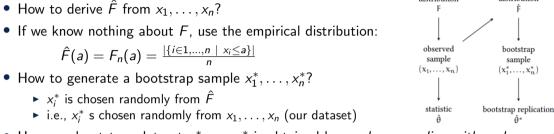
Statistical Methods for Data Science Lesson 19 - Empirical bootstrap.

Salvatore Ruggieri

Department of Computer Science University of Pisa salvatore.ruggieri@unipi.it

Bootstrap principle





true

distribution

empirical

distribution

- Hence, a bootstrap dataset x_1^*, \ldots, x_n^* is obtained by random sampling with replacement!
- Often the bootstrap approximation of the distribution of T will improve if we somehow normalize T by relating it to a corresponding feature of the "true" distribution.
 - ▶ rather than approximating the distribution of \bar{X}_n by the one of \bar{X}_n^*
 - better to approximate $\bar{X}_n \mu$ by $\bar{X}_n^* \mu^*$, where $\mu^* = \bar{x}_n = (x_1^* + \ldots + x_n^*)/n$ [See remarks 18.1 and 18.2 of textbook]

EMPIRICAL BOOTSTRAP SIMULATION (FOR $\bar{X}_n - \mu$). Given a dataset x_1, x_2, \ldots, x_n , determine its empirical distribution function F_n as an estimate of F, and compute the expectation

$$\mu^* = \bar{x}_n = \frac{x_1 + x_2 + \dots + x_n}{n}$$

corresponding to F_n .

- 1. Generate a bootstrap dataset $x_1^*, x_2^*, \ldots, x_n^*$ from F_n .
- 2. Compute the centered sample mean for the bootstrap dataset:

$$\bar{x}_n^* - \bar{x}_n$$

where

$$\bar{x}_n^* = \frac{x_1^* + x_2^* + \dots + x_n^*}{n}$$

Repeat steps 1 and 2 many times.

- Use the empirical distribution of $\delta^* = \bar{x}_n^* \bar{x}_n$ for estimating
 - $\delta = \bar{x}_n \mu$ as mean (δ^*)
 - and then $\mu = \bar{x}_n \operatorname{mean}(\delta^*)$

EMPIRICAL BOOTSTRAP SIMULATION (FOR $\bar{X}_n - \mu$). Given a dataset x_1, x_2, \ldots, x_n , determine its empirical distribution function F_n as an estimate of F, and compute the expectation

$$\mu^* = \bar{x}_n = \frac{x_1 + x_2 + \dots + x_n}{n}$$

corresponding to F_n .

- 1. Generate a bootstrap dataset $x_1^*, x_2^*, \ldots, x_n^*$ from F_n .
- 2. Compute the centered sample mean for the bootstrap dataset:

$$\bar{x}_n^* - \bar{x}_n$$

where

$$\bar{x}_n^* = \frac{x_1^* + x_2^* + \dots + x_n^*}{n}$$

Repeat steps 1 and 2 many times.

- Use the empirical distribution of $\delta^* = \bar{x}_n^* \bar{x}_n$ for estimating
 - confidence interval (c_l, c_u) for $\delta = \bar{x}_n \mu$ as $(q_{\alpha/2}, q_{1-\alpha/2})$ of δ^* distribution
 - $c_l \leq \delta = \bar{x}_n \mu \leq c_u$ implies $\bar{x}_n c_u \leq \mu \leq \bar{x}_n c_l$, i.e. c.i. for μ is $(\bar{x}_n c_u, \bar{x}_n c_l)$

boot.ci method in R confidence intervals:

- type='basic': $(ar{x}_n-q_{1-lpha/2},ar{x}_n-q_{lpha/2})$ with quantiles over the distribution of δ^*
- type='perc': $(q_{lpha/2},q_{1-lpha/2})$ with quantiles over the distribution of $ar{x}^*_n$
- type='norm': $(\bar{x}_n q_{1-\alpha/2}, \bar{x}_n q_{\alpha/2})$ with quantiles over $N(mean(\delta^*), var(\delta^*))$
- type='bca': bias correction and acceleration

boot.ci method in R confidence intervals:

• type='stud':
$$(\bar{x}_n - q_{1-\alpha/2}\frac{s_n}{\sqrt{n}}, \bar{x}_n - q_{\alpha/2}\frac{s_n}{\sqrt{n}})$$
 with quantiles over the distribution of t^*

EMPIRICAL BOOTSTRAP SIMULATION FOR THE STUDENTIZED MEAN. Given a dataset x_1, x_2, \ldots, x_n , determine its empirical distribution function F_n as an estimate of F. The expectation corresponding to F_n is $\mu^* = \bar{x}_n$.

- 1. Generate a bootstrap dataset $x_1^*, x_2^*, \ldots, x_n^*$ from F_n .
- 2. Compute the studentized mean for the bootstrap dataset:

$$\bar{x}^* = \frac{\bar{x}_n^* - \bar{x}_n}{s_n^* / \sqrt{n}}$$

where \bar{x}_n^* and s_n^* are the sample mean and sample standard deviation of $x_1^*, x_2^*, \ldots, x_n^*$. Repeat steps 1 and 2 many times.

- Bootstrap approach applies to any estimator, not only the mean
- Example 1: the German Tank problem
- Example 2: linear regression coefficients

An application of empirical bootstrap

- Bootstrap principle: the empirical distribution of $\delta^* = \bar{x}_n^* \bar{x}_n$ approximates the distribution of $\delta = \bar{x}_n \mu$
- Application: estimate $P(|ar{X}_n-\mu|>1)$ as the fraction of δ^* such that $|\delta^*|>1$
- How good is the approximation?