Statistical Methods for Data Science
Lesson 19 - Empirical bootstrap.

Salvatore Ruggieri
Department of Computer Science
University of Pisa
salvatore.ruggieri@unipi.it
Bootstrap principle

- Let $X_1, \ldots, X_n \sim F$ be a random sample with *unknown distribution* F.
- Estimator $T = h(X_1, \ldots, X_n)$, e.g., $\bar{X}_n = (X_1 + \ldots + X_n)/n$.
- From a dataset x_1, \ldots, x_n, we can
 - derive a point estimate $\hat{\theta} = h(x_1, \ldots, x_n)$
 - or, derive an estimate \hat{F} of F.
- From \hat{F} we can generate (a lot of) *bootstrap samples* x_1^*, \ldots, x_n^*
 - as realizations of $X_1^*, \ldots, X_n^* \sim \hat{F}$
and then (a lot of) bootstrap point estimates $\hat{\theta}^* = h(x_1^*, \ldots, x_n^*)$.
- By the LLN, the empirical distribution of $\hat{\theta}^*$ will approximate the distribution of $T^* = h(X_1^*, \ldots, X_n^*)$ and then of T.

Bootstrap principle. Use the dataset x_1, x_2, \ldots, x_n to compute an estimate \hat{F} for the “true” distribution function F. Replace the random sample X_1, X_2, \ldots, X_n from F by a random sample $X_1^*, X_2^*, \ldots, X_n^*$ from \hat{F}, and approximate the probability distribution of $h(X_1, X_2, \ldots, X_n)$ by that of $h(X_1^*, X_2^*, \ldots, X_n^*)$.

Empirical bootstrap

- How to derive \hat{F} from x_1, \ldots, x_n?
- If we know nothing about F, use the empirical distribution:
 \[\hat{F}(a) = F_n(a) = \frac{|\{i \in 1, \ldots, n \mid x_i \leq a\}|}{n} \]
 \[\text{[Glivenko-Cantelli Thm]} \]
- How to generate a bootstrap sample x_1^*, \ldots, x_n^*?
 - x_i^* is chosen randomly from \hat{F}
 - i.e., x_i^* is chosen randomly from x_1, \ldots, x_n (our dataset)
- Hence, a bootstrap dataset x_1^*, \ldots, x_n^* is obtained by random sampling with replacement!
- Often the bootstrap approximation of the distribution of T will improve if we somehow normalize T by relating it to a corresponding feature of the “true” distribution.
 - rather than approximating the distribution of \bar{X}_n by the one of \bar{X}_n^*
 - better to approximate $\bar{X}_n - \mu$ by $\bar{X}_n^* - \mu^*$, where $\mu^* = \bar{x}_n = (x_1^* + \ldots + x_n^*)/n$
 \[\text{[See remarks 18.1 and 18.2 of textbook]} \]
Empirical bootstrap

Empirical bootstrap simulation (for $X_n - \mu$). Given a dataset x_1, x_2, \ldots, x_n, determine its empirical distribution function F_n as an estimate of F, and compute the expectation

$$\mu^* = \bar{x}_n = \frac{x_1 + x_2 + \cdots + x_n}{n}$$

corresponding to F_n.

1. Generate a bootstrap dataset $x_1^*, x_2^*, \ldots, x_n^*$ from F_n.
2. Compute the centered sample mean for the bootstrap dataset:

$$\bar{x}_n^* - \bar{x}_n,$$

where

$$\bar{x}_n^* = \frac{x_1^* + x_2^* + \cdots + x_n^*}{n}.$$

Repeat steps 1 and 2 many times.

- Use the empirical distribution of $\delta^* = \bar{x}_n^* - \bar{x}_n$ for estimating
 - $\delta = \bar{x}_n - \mu$ as mean(δ^*)
 - and then $\mu = \bar{x}_n - \text{mean}(\delta^*)$ with bias $\bar{x}_n - (\bar{x}_n - \text{mean}(\delta^*)) = \text{mean}(\delta^*)$

See R script
Empirical bootstrap

Empirical Bootstrap Simulation (for $\bar{X}_n - \mu$). Given a dataset x_1, x_2, \ldots, x_n, determine its empirical distribution function F_n as an estimate of F, and compute the expectation

$$\mu^* = \bar{x}_n = \frac{x_1 + x_2 + \cdots + x_n}{n}$$

corresponding to F_n.

1. Generate a bootstrap dataset $x_1^*, x_2^*, \ldots, x_n^*$ from F_n.
2. Compute the centered sample mean for the bootstrap dataset:

$$\bar{x}_n^* - \bar{x}_n,$$

where

$$\bar{x}_n^* = \frac{x_1^* + x_2^* + \cdots + x_n^*}{n}.$$

Repeat steps 1 and 2 many times.

- Use the empirical distribution of $\delta^* = \bar{x}_n^* - \bar{x}_n$ for estimating
 - confidence interval (c_l, c_u) for $\delta = \bar{x}_n - \mu$ as $(q_{\alpha/2}, q_{1-\alpha/2})$ of δ^* distribution
 - $c_l \leq \delta = \bar{x}_n - \mu \leq c_u$ implies $\bar{x}_n - c_u \leq \mu \leq \bar{x}_n - c_l$, i.e. c.i. for μ is $(\bar{x}_n - c_u, \bar{x}_n - c_l)$

See R script
Empirical bootstrap

`boot.ci` method in R confidence intervals:

- `type='basic'`: \((\bar{x}_n - q_{1-\alpha/2}, \bar{x}_n - q_{\alpha/2})\) with quantiles over the distribution of \(\delta^*\)
- `type='perc'`: \((q_{\alpha/2}, q_{1-\alpha/2})\) with quantiles over the distribution of \(\bar{x}_n^*\)
- `type='norm'`: \((\bar{x}_n - q_{1-\alpha/2}, \bar{x}_n - q_{\alpha/2})\) with quantiles over \(N(mean(\delta^*), var(\delta^*))\)
- `type='bca'`: bias correction and acceleration
Empirical bootstrap

boot.ci method in R confidence intervals:

• type='stud': \((\bar{x}_n - q_{1-\alpha/2} \frac{s_n}{\sqrt{n}}, \bar{x}_n - q_{\alpha/2} \frac{s_n}{\sqrt{n}})\) with quantiles over the distribution of \(t^*\)

See R script
Empirical bootstrap

- Bootstrap approach applies to **any** estimator, not only the mean
- Example 1: the German Tank problem
- Example 2: linear regression coefficients

See R script
An application of empirical bootstrap

- Bootstrap principle: the empirical distribution of $\delta^* = \bar{x}^* - \bar{x}$ approximates the distribution of $\delta = \bar{x} - \mu$

- Application: estimate $P(|\bar{X}_n - \mu| > 1)$ as the fraction of δ^* such that $|\delta^*| > 1$

- How good is the approximation?

See R script