Statistical Methods for Data Science
Lesson 16 - Multiple, non-linear, and logistic regression.

Salvatore Ruggieri

Department of Computer Science
University of Pisa
salvatore.ruggieri@unipi.it
Simple linear regression model

Simple linear regression model. In a simple linear regression model for a bivariate dataset \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\), we assume that \(x_1, x_2, \ldots, x_n\) are nonrandom and that \(y_1, y_2, \ldots, y_n\) are realizations of random variables \(Y_1, Y_2, \ldots, Y_n\) satisfying

\[
Y_i = \alpha + \beta x_i + U_i \quad \text{for} \ i = 1, 2, \ldots, n,
\]

where \(U_1, \ldots, U_n\) are independent random variables with \(E[U_i] = 0\) and \(\text{Var}(U_i) = \sigma^2\).

- **Regression line:** \(y = \alpha + \beta x\) with intercept \(\alpha\) and slope \(\beta\)
- Least Square Estimators: \(\hat{\alpha}\) and \(\hat{\beta}\) and \(\hat{\sigma}^2\)
- Unbiasedness: \(E[\hat{\alpha}] = \alpha\) and \(E[\hat{\beta}] = \beta\) and \(E[\hat{\sigma}^2] = \sigma^2\)
- Moreover: \(\text{Var}(\hat{\alpha}) = \sigma^2(1/n + \bar{x}^2 / SXX)\) and \(\text{Var}(\hat{\beta}) = \sigma^2 / SXX\)
- **Standard errors** (estimates of \(\sqrt{\text{Var}(\hat{\alpha})}\) and \(\sqrt{\text{Var}(\hat{\beta})}\)):

\[
\text{se}(\hat{\alpha}) = \hat{\sigma} \sqrt{\left(\frac{1}{n} + \frac{\bar{x}^2}{SXX}\right)} \quad \text{se}(\hat{\beta}) = \frac{\hat{\sigma}}{\sqrt{SXX}}
\]
Standard error of fitted values (predictions)

- For a given x_0, the estimator $\hat{Y} = \hat{\alpha} + \hat{\beta}x_0$ has expectation $E[\hat{Y}] = \alpha + \beta x_0$
- Hence, $\hat{y} = \alpha + \beta x_0$, is the best estimate for the fitted value
- Variance of \hat{Y} is: $\text{Var}(\hat{Y}) = \sigma^2 \left(\frac{1}{n} + \frac{(\bar{x}_n - x_0)^2}{SXX} \right)$

- The standard error of the fitted value is then the estimate:

 $$\text{se}(\hat{Y}) = \hat{\sigma} \sqrt{ \frac{1}{n} + \frac{(\bar{x}_n - x_0)^2}{SXX} }$$

where

$$SXX = \sum_{1}^{n} (x_i - \bar{x}_n)^2$$

$$\hat{\sigma}^2 = \frac{1}{n - 2} \sum_{1}^{n} (y_i - \hat{\alpha} - \hat{\beta} x_i)^2$$

[See notes2.pdf]

See R script
Weighted Least Squares and simple polynomial regression

• Weighted Simple Regression

\[
S(\alpha, \beta) = \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2 w_i
\]

- \(w_i\) is the weight (or importance) of observation \((x_i, y_i)\)
- For integer weights, it is the same as replicating instances

• Polynomial Simple Regression

\[
S(\alpha, \beta) = \sum_{i=1}^{n} (y_i - \alpha - \beta_1 x_i - \beta_2 x_i^2 - \ldots - \beta_k x_i^k)^2
\]

- \(Y_i = \alpha + \beta_1 x_i + \beta_2 x_i^2 + \ldots + \beta_k x_i^k + U_i\) for \(i = 1, 2, \ldots, n\)

See R script
Non-linear regression and transformably linear functions

- Non-linear Simple Regression, for a generic function \(f() \)
 - \(Y_i = f(\alpha, \beta, x_i) + U_i \) for \(i = 1, 2, \ldots, n \)

\[
S(\alpha, \beta) = \sum_{i=1}^{n} (y_i - f(\alpha, \beta, x_i))^2
\]

- \(\min S(\alpha, \beta) \) maybe without a closed form
 - use numeric search of the minimum (which may fail to find!), e.g., gradient descent
- Some \(f() \) can be favourably transformed, e.g., \(f(\alpha, \beta, x_i) = \alpha x_i^\beta \) [Linearization]
- Solve \(\log Y_i = \log \alpha + \beta \log x_i + U_i \) and then by exponentiation:

\[
Y_i = \alpha x_i^\beta e^{U_i}
\]

where the error term is a multiplicative factor (must be checked with residual analysis)

See R script
Multiple linear regression

• Multivariate dataset:

\((x_1^1, x_1^2, \ldots, x_k^k, y_1), \ldots, (x_n^1, x_n^2, \ldots, x_n^k, y_n)\)

• \(Y_i = \alpha + \beta_1 x_1^i + \ldots + \beta_k x_k^i + U_i\)

• In vector terms:
 - \(Y_i = \mathbf{x}_i \cdot \mathbf{\beta} + U_i\), where \(\mathbf{\beta}^T = (\alpha, \beta_1, \ldots, \beta_k)\) and \(\mathbf{x}_i = (1, x_1^i, \ldots, x_k^i)\)
 - \(\mathbf{Y} = \mathbf{X} \cdot \mathbf{\beta} + \mathbf{U}\), where \(\mathbf{Y} = (Y_1, \ldots, Y_n)\), \(\mathbf{U} = (U_1, \ldots, U_n)\), and \(\mathbf{X} = (x_1, \ldots, x_n)\)

• Ordinary Least Square Estimation (OLS):

\[
S(\mathbf{\beta}) = \sum_{i=1}^{n} (y_i - \mathbf{x}_i \cdot \mathbf{\beta})^2 = \|\mathbf{y} - \mathbf{X} \cdot \mathbf{\beta}\|^2 \\
\hat{\mathbf{\beta}} = \arg\min_{\mathbf{\beta}} S(\mathbf{\beta}) = (\mathbf{X}^T \cdot \mathbf{X})^{-1} \cdot \mathbf{X}^T \cdot \mathbf{y}
\]

where \(\mathbf{y} = (y_1, \ldots, y_n)\) and \(\|(v_1, \ldots, v_n)\| = \sqrt{\sum_{i=1}^{n} v_i^2}\) is the Euclidian norm

• Meaning of \(\beta_i\): change of \(Y\) due to a unit change in \(x_i\) all the \(x_j\) with \(j \neq i\) unchanged!

• It is the best (ie., smallest MSE) linear unbiased estimator \([\text{Gauss-Markov Thm.}]\)

See R script
Omitted variable bias

- \(Y_i = \alpha + \beta x_i + U_i \)
- Assume there exists a third (unknown) variable \(Z \) such that:
 - \(X \) and \(Z \) are correlated
 - \(Y \) is determined by \(Z \)
- \(Y_i = \alpha + \beta_1 x_i + \beta_2 z_i + U'_i \) but we do not know \(z_i \)'s
- \(E[U_i] = E[\beta_2 z_i + U'_i] = \beta_2 z_i + E[U'_i] = \beta_2 z_i \neq 0 \)
- The problem **cannot** be solved by increasing the number of observations!

See R script
Multi-collinearity and variance inflation factors

- **Multicollinearity**: two or more independent variables (regressors) are strongly correlated.

\[Y_i = \alpha + \beta_1 x_{i1} + \beta_2 x_{i2} + U_i \]

- It can be shown that for \(j \in \{1, 2\} \):

\[
\text{Var}(\hat{\beta}_j) = \frac{1}{1 - r^2} \cdot \frac{\sigma^2}{SXX_j}
\]

where \(r = \text{cor}(x^1, x^2) \), \(\sigma^2 = \text{Var}(U_i) \) and \(SXX_j = \sum_{i=1}^{n} (x_{ji} - \bar{x}_n)^2 \)

- Correlation between regressors increases the variance of the estimators

- In general, for more than 2 variables:

\[
\text{Var}(\hat{\beta}_j) = \frac{1}{1 - R_{j}^2} \cdot \frac{\sigma^2}{SXX_j}
\]

where \(R_{j}^2 \) is the coefficient of determination \((R^2) \) in the regression of \(x_j \) from all other \(x_i \)'s.

- The term \(\frac{1}{1 - R_{j}^2} \) is called **variance inflation factor**

See R script
Variable selection

• Recall: when \(U_i \sim N(0, \sigma^2) \), we have \(Y_i \sim N(x_i \cdot \beta, \sigma^2) \), hence we can apply MLE

• Log-likelihood is \(\ell(\beta) = \sum_{i=1}^{n} \log \left(\frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{y_i - x_i \cdot \beta}{\sigma^2} \right)^2} \right) \)

• Akaike information criterion (AIC), balances model fit against model simplicity

\[
AIC(\beta) = 2|\beta| - 2\ell(\beta)
\]

• stepAIC(model, direction="backward") algorithm
 1. \(S = \{x^1, \ldots, x^k\} \)
 2. \(b = AIC(S) \)
 3. repeat
 3.1 \(x = \text{argmin}_{x \in S} AIC(S \setminus \{x\}) \)
 3.2 \(v = AIC(S \setminus \{x\}) \)
 3.3 if \(v < b \) then \(S, b = S \setminus \{x\}, v \)
 4. until no change in \(S \)
 5. return \(S \)

See R script
Regularization methods

\[\hat{\beta} = \text{argmin}_\beta S(\beta) \]

- Ordinary Least Square Estimation (OLS):
 \[S(\beta) = \|y - X \cdot \beta\|^2 \]
 where \(\|(v_1, \ldots, v_n)\| = \sqrt{\sum_{i=1}^{n} v_i^2} \) is the Euclidean norm

- Ridge regression:
 \[S(\beta) = \|y - X \cdot \beta\|^2 + \lambda_2 \|\beta\|^2 \]
 where \(\|\beta\|^2 = \alpha^2 + \sum_{i=1}^{k} \beta_i^2 \).
 ▶ Notice that \(\lambda_2 \) is not in the parameters of the minimization problem!
 ▶ Variables with minor contribution have their coefficients close to zero
 ▶ It improves prediction error by reducing overfitting through a bias-variance trade-off
 ▶ It is not a parsimonious method, i.e., does not reduce features
Regularization methods

- Lasso (least absolute shrinkage and selection operator) regression:

\[S(\beta) = \| y - X \cdot \beta \|^2 + \lambda_1 \| \beta \|_1 \]

where \(\| \beta \|_1 = |\alpha| + \sum_{i=1}^{k} |\beta_i| \).

▶ Notice that \(\lambda_1 \) is not in the parameters of the minimization problem!
▶ Variable with minor contribution have their coefficients \textbf{equal} to zero
▶ It improves prediction error by reducing overfitting through a bias-variance trade-off
▶ It \textbf{is} a parsimonious method, i.e., does reduce features

- Penalized linear regression:

\[S(\beta) = \| y - X \cdot \beta \|^2 + \lambda_2 \| \beta \|^2 + \lambda_1 \| \beta \|_1 \]

▶ Both Ridge and Lasso regularization parameters

- How to solve the minimization problems? \textbf{Lagrange multiplier method} or \textbf{reduction to Support Vector Machine} learning

- How to find the best \(\lambda_1 \) and/or \(\lambda_2 \)? Cross-validation!

\textbf{See R script}
Multivariate linear regression

- The multivariate linear model accommodates two or more dependent variables

\[Y = X\beta + U \]

where

- \(Y \) is \(n \times m \): \(n \) observations, \(m \) dependent variables
- \(X \) is \(n \times (k + 1) \): \(n \) observations, \(k \) independent variables +1 constants
- \(\beta \) is \((k + 1) \times m \): \(k \) parameters \(\beta \) +1 parameter \(\alpha \) for each of the \(m \) dependent variables
- \(U \) is \(n \times m \): \(n \) observations, \(m \) error terms

- It is not just a collection of \(m \) multiple linear regressions
- Errors in rows (observations) of \(U \) are independent, as in a single multiple linear regression
- Errors in columns (dependent variables) are allowed to be correlated.
 - E.g., errors of plasma level and amitriptyline due to usage of drugs
 - Hence, coefficients from the models covary! More later on confidence intervals for coefficients

See R script
Towards logistic regression

• Consider a bivariate dataset

\[(x_1, y_1), \ldots, (x_n, y_n) \]

where \(y_i \in \{0, 1\} \), i.e., \(Y_i \) is a binary variable

• Using directly use linear regression:

\[Y_i = \alpha + \beta x_i + U_i \]

results in poor performances (\(R^2 \))

See R script
Towards logistic regression

• Consider a bivariate dataset
 \[(x_1, y_1), \ldots, (x_n, y_n)\]
 where \(y_i \in \{0, 1\}\), i.e., \(Y_i\) is binary variable

• Group by \(x\) values:
 \[(d_1, f_1), \ldots, (d_m, f_m)\]
 where \(d_1, \ldots, d_m\) are the distinct values of \(x_1, \ldots, x_n\) and \(f_i\) is the fraction of 1’s:
 \[
f_i = \frac{|\{j \in [1, n] \mid x_j = d_i \land y_j = 1\}|}{|\{j \in [1, n] \mid x_j = d_i\}|}
 \]
 and the linear model (we continue using \(x_i\) but it should be \(d_i\)):
 \[
 F_i = \alpha + \beta x_i + U_i
 \]

See R script
Towards logistic regression

• Rather than f_i, we model the logit of f_i

$$\text{logit}(F_i) = \alpha + \beta x_i + U_i$$

where logit and its inverse (logistic function) are:

$$\text{logit}(p) = \log \frac{p}{1 - p} \quad \text{inv.logit}(x) = \frac{e^x}{1 + e^x} = \frac{1}{1 + e^{-x}}$$

See R script
Logistic regression and generalized linear models

- Since Y_i's are binary, $F_i = P(Y_i = 1|X = x_i) \sim Ber(f_i)$, and U_i is not necessary
 $$logit(F_i) = \alpha + \beta x_i$$
 and then $F_i = P(Y_i = 1|X = x_i) = inv.logit(\alpha + \beta x_i) = \frac{e^{\alpha + \beta x_i}}{1 + e^{\alpha + \beta x_i}}$

- Linear regression predict the value Y_i
- Logistic regression predict the probability $P(Y_i = 1)$
- Generalized linear models:
 ▶ family = distribution + link function
 ▶ E.g., Binomial + logit for logistic regression
 ▶ For $Y_i \in \{0, 1\}$, actually Bernoulli + logit

- Since distribution is known, MLE can be adopted for estimating α and β:
 $$\ell(\alpha, \beta) = \sum_{i=1}^{n} [y_i \log(inv.logit(\alpha + \beta x_i)) + (1 - y_i) \log(1 - inv.logit(\alpha + \beta x_i))]$$

See R script
Elastic net logistic regression

- Penalized linear regression minimizes:
 \[\| y - X \cdot \beta \|^2 + \lambda_2 \| \beta \|^2 + \lambda_1 \| \beta \|_1 \]
 - \(\lambda_1 = 0 \) is the Ridge penalty
 - \(\lambda_2 = 0 \) is the Lasso penalty

- Elastic net regularization for logistic regression minimizes:
 \[-\ell(\beta) + \lambda \left(\frac{(1 - \alpha)}{2} \| \beta \|^2 + \alpha \| \beta \|_1 \right) \]
 - \(\alpha = 0 \) is the Ridge penalty
 - \(\alpha = 1 \) is the Lasso penalty
 - \(\lambda \) is to be found, e.g., by cross-validation

See R script