Consider a bivariate dataset

\[(x_1, y_1), \ldots, (x_n, y_n)\]

It can be visualized in a scatter plot

This suggests a relation \(\text{Hardness} = \alpha + \beta \cdot \text{Density} + \text{random fluctuation} \)
Simple linear regression model

In a simple linear regression model for a bivariate dataset \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\), we assume that \(x_1, x_2, \ldots, x_n\) are nonrandom and that \(y_1, y_2, \ldots, y_n\) are realizations of random variables \(Y_1, Y_2, \ldots, Y_n\) satisfying

\[Y_i = \alpha + \beta x_i + U_i \quad \text{for} \quad i = 1, 2, \ldots, n, \]

where \(U_1, \ldots, U_n\) are independent random variables with \(E[U_i] = 0\) and \(\text{Var}(U_i) = \sigma^2\).

- **Regression line**: \(y = \alpha + \beta x\) with intercept \(\alpha\) and slope \(\beta\)
- \(x\) is called the explanatory (or independent) variable, and \(y\) the response (or dependent) variable
- Independence of \(U_1, \ldots, U_n\) implies independence of \(Y_1, \ldots, Y_n\)
 - But \(Y_i\)'s are not identically distributed, as \(E[Y_i] = \alpha + \beta x_i\)
- Also, notice \(\text{Var}(Y_i) = \text{Var}(U_i) = \sigma^2\) [homoscedasticity]
Estimation of parameters

- How to estimate α and β? MLE requires to know the distribution of the U_i's

- $y_i - \alpha - \beta x_i$ is called a residual, and it is a realization of U_i
 - recall that $E[U_i] = 0$ and $\text{Var}(U_i) = E[U_i^2] = \sigma^2$

- The method of Least Squares prescribes to minimize the sum of squares of residuals:

$$\hat{\alpha}, \hat{\beta} = \arg\min_{\alpha, \beta} S(\alpha, \beta) \quad \text{where} \quad S(\alpha, \beta) = \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2$$
Least Squares Estimates

\[S(\alpha, \beta) = \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2 \]

- Partial derivatives:
 \[\frac{d}{d\alpha} S(\alpha, \beta) = - \sum_{i=1}^{n} 2(y_i - \alpha - \beta x_i) \]
 \[\frac{d}{d\beta} S(\alpha, \beta) = - \sum_{i=1}^{n} 2(y_i - \alpha - \beta x_i)x_i \]
- Equal to 0 for:
 \[n\alpha + \beta \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i \]
 \[\alpha \sum_{i=1}^{n} x_i + \beta \sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} x_i y_i \]
- and solving, we get:
 \[\hat{\alpha} = \bar{y}_n - \hat{\beta} \bar{x}_n \]
 \[\hat{\beta} = \frac{n \sum_{i=1}^{n} x_i y_i - (\sum_{i=1}^{n} x_i)(\sum_{i=1}^{n} y_i)}{n \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2} \]
Least Squares Estimates

\[
\hat{\alpha} = \bar{y}_n - \hat{\beta} \bar{x}_n \\
\hat{\beta} = \frac{n \sum_{i=1}^{n} x_i y_i - (\sum_{i=1}^{n} x_i)(\sum_{i=1}^{n} y_i)}{n \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2}
\]

- Equivalent form of \(\hat{\beta} \)

\[
\hat{\beta} = \frac{\sum_{i=1}^{n}(x_i - \bar{x}_n)(y_i - \bar{y}_n)}{SXX} = r_{xy} \frac{s_y}{s_x}
\]

where:
- \(SXX = \sum_{i=1}^{n}(x_i - \bar{x}_n)^2 \)
- \(r_{xy} = \frac{\sum_{i=1}^{n}(x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n}(x_i - \bar{x})^2 \cdot \sum_{i=1}^{n}(y_i - \bar{y})^2}} \) is the Pearson’s correlation coefficient
- \(s_x = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n}(x_i - \bar{x}_n)^2} \) is the sample standard deviations of \(x_i \)'s
- \(s_y = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n}(y_i - \bar{y}_n)^2} \) is the sample standard deviations of \(y_i \)'s

- The line \(y = \hat{\alpha} + \hat{\beta} x \) always passes through the center of gravity \((\bar{x}_n, \bar{y}_n)\)
 - Since \(\hat{\alpha} = \bar{y}_n - \hat{\beta} \bar{x}_n \), we have \(\hat{\alpha} + \hat{\beta} \bar{x}_n = \bar{y}_n - \hat{\beta} \bar{x}_n + \hat{\beta} \bar{x}_n = \bar{y}_n \)

See R script
“Galton concluded that as heights of the parents deviated from the average height, [...] the heights of the children *regressed* to the average height of an adult.”
Unbiasedness of estimators: $\hat{\beta}$

- Consider the least square estimators:
 \[
 \hat{\alpha} = \bar{Y}_n - \hat{\beta} \bar{x}_n \\
 \hat{\beta} = \frac{\sum_1^n (x_i - \bar{x}_n)(Y_i - \bar{Y}_n)}{SXX}
 \]

 where $SXX = \sum_1^n (x_i - \bar{x}_n)^2$. Since $\sum_1^n (x_i - \bar{x}_n) = 0$, we can rewrite $\hat{\beta}$ as:

 \[
 \hat{\beta} = \frac{\sum_1^n (x_i - \bar{x}_n)Y_i - \sum_1^n (x_i - \bar{x}_n)\bar{Y}_n}{SXX} = \frac{\sum_1^n (x_i - \bar{x}_n)Y_i}{SXX} \tag{1}
 \]

- We have:

 \[
 E[\hat{\beta}] = \frac{\sum_1^n (x_i - \bar{x}_n)E[Y_i]}{SXX} = \frac{\sum_1^n (x_i - \bar{x}_n)(\alpha + \beta x_i)}{SXX} = \frac{\beta \sum_1^n (x_i - \bar{x}_n)x_i}{SXX} = \beta
 \]

 where the last step follows since $\sum_1^n (x_i - \bar{x}_n)x_i = \sum_1^n (x_i - \bar{x}_n)x_i - \sum_1^n (x_i - \bar{x}_n)\bar{x} = SXX$.

- Moreover:

 \[
 \text{Var}(\hat{\beta}) = \frac{\sum_1^n (x_i - \bar{x}_n)^2 \text{Var}(Y_i)}{SXX^2} = \sigma^2 \frac{\sum_1^n (x_i - \bar{x}_n)^2}{SXX^2} = \frac{\sigma^2}{SXX}
 \]
Unbiasedness of estimators: $\hat{\alpha}$

- Consider the least square estimators:
 \[
 \hat{\alpha} = \bar{Y}_n - \hat{\beta}\bar{x}_n \\
 \hat{\beta} = \frac{\sum_{i=1}^{n}(x_i - \bar{x}_n)(Y_i - \bar{Y}_n)}{SXX}
 \]

- We have:
 \[
 E[\hat{\alpha}] = E[\bar{Y}_n] - \bar{x}_n E[\hat{\beta}] = \frac{1}{n} \sum_{i=1}^{n} E[Y_i] - \bar{x}_n \beta \\
 = \frac{1}{n} \sum_{i=1}^{n} (\alpha + \beta x_i) - \bar{x}_n \beta = \alpha + \bar{x}_n \beta - \bar{x}_n \beta = \alpha
 \]

- Moreover:
 \[
 \text{Var}(\hat{\alpha}) = \text{Var}(\bar{Y}_n - \hat{\beta}\bar{x}_n) = \text{Var}(\bar{Y}_n) + \bar{x}_n^2 \text{Var}(\hat{\beta}) - 2\bar{x}_n \text{Cov}(\bar{Y}_n, \hat{\beta}) = \sigma^2 \left(\frac{1}{n} + \frac{\bar{x}_n^2}{SXX} \right)
 \]
 where $\text{Cov}(\bar{Y}_n, \hat{\beta}) = 0$ [prove it or see notes2.pdf!]
An estimator for σ^2, and standard errors

- $\text{Var}(\hat{\alpha})$ and $\text{Var}(\hat{\beta})$ use σ^2, which is unknown
- An unbiased estimate of σ^2 is:

$$\hat{\sigma}^2 = \frac{1}{n-2} \sum_{1}^{n} (y_i - \hat{\alpha} - \hat{\beta}x_i)^2$$

$\hat{\sigma}$ is called the residual standard error
- The standard errors of the coefficient estimators are defined as the estimates of the standard deviations:

$$\text{se}(\hat{\alpha}) = \hat{\sigma} \sqrt{\left(\frac{1}{n} + \frac{\bar{x}^2_n}{SXX} \right)}$$

$$\text{se}(\hat{\beta}) = \frac{\hat{\sigma}}{\sqrt{SXX}}$$

(2)

See R script
LSE: Relation with MLE

\[Y_i = \alpha + \beta x_i + U_i \]

- In case \(U_i \sim N(0, \sigma^2) \), we have \(Y_i \sim N(\alpha + \beta x_i, \sigma^2) \)
- Log-likelihood is
 \[
 \ell(\alpha, \beta) = \sum_{i=1}^{n} \log \left(\frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{y_i - \alpha - \beta x_i}{\sigma^2} \right)^2} \right) = -n \log (\sigma \sqrt{2\pi}) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2
 \]
- It turns out that \(\max_{\alpha, \beta} \ell(\alpha, \beta) = \hat{\alpha}, \hat{\beta} \) [same estimators as LSE]
Residuals and R^2

- Residual standard error vs Root Mean Squared Error (RMSE):
 $$\hat{\sigma} = \sqrt{\frac{1}{n-2} \sum_{1}^{n} (y_i - \hat{\alpha} - \hat{\beta} x_i)^2} \quad \text{RMSE} = \sqrt{\frac{1}{n} \sum_{1}^{n} (y_i - \hat{\alpha} - \hat{\beta} x_i)^2}$$

both measure the variability we cannot explain with the regression model

- Compare $\hat{\sigma}^2$ to the variability of data:
 $$\hat{\sigma}_y^2 = \frac{1}{n-1} \sum_{1}^{n} (y_i - \bar{y}_n)^2$$

 through the adjusted R^2:
 $$adjR^2 = 1 - \frac{\hat{\sigma}^2}{\hat{\sigma}_y^2}$$

- $adjR^2$ ranges from 0 (no variability explained) to 1 (all variability explained)
Residuals and R^2

- When taking *un-adjusted* variances:

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{1}^{n} (y_i - \hat{\alpha} - \hat{\beta}x_i)^2$$

$$\hat{\sigma}_y^2 = \frac{1}{n} \sum_{1}^{n} (y_i - \bar{y}_n)^2$$

we define the coefficient of determination R^2:

$$R^2 = 1 - \frac{\hat{\sigma}^2}{\hat{\sigma}_y^2}$$

See R script