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Example: number of German tanks

• Tanks’ ID drawn at random without replacement from 1, . . . ,N. Objective: estimate N.
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Example: number of German tanks

• Let x1, . . . , xn be the observed ID’s

• E.g., 61, 19, 56, 24, 16 with n = 5
• They are realizations of X1, . . . ,Xn draws without replacement from 1, . . . ,N

I X1, . . . ,Xn is not a random sample, as they are not independent!
I The marginal distribution is Xi ∼ U(1,N) [prove it, or see Sect. 9.3]

• Estimator based on the mean
I we have:

E [X̄n] = E [Xi ] =
N + 1

2
I We can define an estimator

T1 = 2X̄n − 1

I T1 is unbiased: E [T1] = 2E [X̄n]− 1 = N
I E.g., t1 = 2(61 + 19 + 56 + 24 + 16)/5− 1 = 69.4

3 / 49



Example: number of German tanks

• Let x1, . . . , xn be the observed ID’s

• E.g., 61, 19, 56, 24, 16 with n = 5
• They are realizations of X1, . . . ,Xn draws without replacement from 1, . . . ,N

I X1, . . . ,Xn is not a random sample, as they are not independent!
I The marginal distribution is Xi ∼ U(1,N) [prove it, or see Sect. 9.3]

• Estimator based on the mean
I we have:

E [X̄n] = E [Xi ] =
N + 1

2
I We can define an estimator

T1 = 2X̄n − 1

I T1 is unbiased: E [T1] = 2E [X̄n]− 1 = N
I E.g., t1 = 2(61 + 19 + 56 + 24 + 16)/5− 1 = 69.4

4 / 49



Example: number of German tanks

• Let x1, . . . , xn be the observed ID’s

• E.g., 61, 19, 56, 24, 16 with n = 5

• Estimator based on the maximum
I Let Mn = max {X1, . . . ,Xn}
I We have: [see Sect. 20.1]

E [Mn] = n
N + 1

n + 1

I We can define an estimator

T2 =
n + 1

n
Mn − 1

I T2 is unbiased: E [T2] = n+1
n E [Mn]− 1 = N

I E.g., t2 = 6/5 max {61, 19, 56, 24, 16} − 1 = 72.2

See R script
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Estimators

• So far, estimators were naturally derived from parameter definition

• A general principle to derive estimators will be shown today

• Example

• Assume that the data is generated from geometric distributions

P(Xi = k) = (1− p)k−1p

• What is an estimator for p? [parametric inference]
I E.g., since p = P(Xi = 1), we could use S = |{i | Xi=1}|

n , and show E [S ] = p
I p = 29/100 for smokers, and p = 198/486 = 0.41 for non-smokers
I But we did not use all of the available data!
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The maximum likelihood principle

The maximum likelihood principle

Given a dataset, choose the parameter(s) of interest in such a way that the data
are most likely.

• Reconsider the example:

• For k = 1, . . . , 12, P(Xi = k) = (1− p)k−1p. Moreover, P(Xi > 12) = (1− p)12

• Since the Xi ’s are independent, we can write the probability of observing the dataset as:

L(p) = C · P(Xi = 1)29 · P(Xi = 2)16 · . . . · P(Xi = 12)3 · P(Xi > 12)7 = Cp93(1− p)322

• ML principle: choose p̂ = argmaxpL(p)
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Example

• ML principle: choose p̂ = argmaxpL(p) = argmaxpCp
93(1− p)322

• L′(p) = C (93p92(1− p)322 − 322p93(1− p)321) = Cp92(1− p)321(93− 415p)

• L′(p) = 0 for p = 0 or p = 1 or p = 93/415 = 0.224

• ML estimate is argmaxpL(p) = 0.224 < 0.41 (estimate using S)

• Alternative strategy for maximization

argmaxpL(p) = argmaxp log L(p)

• log L(p) = logC + 93 log p + 322 log (1− p)

• log′ L(p) = 93
p −

322
1−p

• log′ L(p) = 0 for 322p = 93(1− p), i.e., p = 93/(322 + 93) = 0.224

See R script
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Likelihood and log-likelihood

• Let x1, . . . , xn be realization of a random sample X1, . . . ,Xn

Likelihood and log-likelihood functions

Let fθ(x) be the density/p.m.f. of the distribution of X ′
i s, with parameter θ. The

likelihood function is:

L(θ) = P(X1 = x1, . . . ,Xn = xn) =
n∏

i=1

fθ(xi )

and the log-likelihood function is:

`(θ) = log L(θ) =
n∑

i=1

log fθ(xi )
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Example: MLE of exponential distribution

• Random sample of Exp(λ) E [X ] = 1/λ

• Since fλ(x) = λe−λx for x ≥ 0:

`(λ) =
n∑

i=1

(log λ− λxi ) = n log λ− λ(x1 + . . .+ xn) = n(log λ− λx̄n)

• `′(λ) = 0 iff n(1/λ− x̄n) = 0 iff λ = 1/x̄n

• T = 1/X̄n is the MLE of λ for a Exp(λ)-distributed random sample

• It is biased!: E [T ] ≥ 1/E [X̄n] = λ [Jensen’s inequality]
• Exercise at home

I show that X̄n is an unbiased MLE of θ for a Exp(1/θ)-distributed random sample
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Example: upper point of a uniform distribution

• Dataset: x1 = 0.98, x2 = 1.57, x3 = 0.31 from U(0, θ) for unknown θ > 0

• fθ(x) = 1/θ for 0 ≤ x ≤ θ and fθ(x) = 0 otherwise

L(θ) = fθ(x1)fθ(x2)fθ(x3) =

{
1
θ3 if θ ≥ max{x1, x2, x3} = 1.57
0 otherwise

• In general, MLE estimator is max{X1, . . . ,Xn}
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Example: MLE of normal distribution

• Random sample of N(µ, σ2)

• MLE of θ = (µ, σ2) where fµ,σ2(x) = 1
σ
√

2π
e−

1
2 ( x−µ

σ )
2

[we work on σ2, not on σ]

`(µ, σ2) = −n log σ − n log
√

2π − 1

2σ2

n∑
i=1

(xi − µ)2

• Partial derivatives:

d

dµ
`(µ, σ) =

n

σ2
(x̄n − µ)

d

dσ2
`(µ, σ) =

1

2σ2

(
1

σ2

n∑
i=1

(xi − µ)2 − n

)

• Partial derivatives at 0 for µ = x̄n and σ2 = 1
n

∑n
i=1(xi − µ)2 [prove it is a maximum]

• MLE estimators µ = X̄n (unbiased) and σ2 = 1
n

∑n
i=1(Xi − µ)2 (biased)

See R script
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Loss functions (to be minimized)

• Negative log-likelihood (nLL)
nLL(θ) = −`(θ)

• Akaike information criterion (AIC), balances model fit against model simplicity

AIC (θ) = 2|θ| − 2`(θ)

• Bayesian information criterion (BIC), stronger balances over model simplicity

BIC (θ) = |θ| log n − 2`(θ)
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Properties of MLE estimators

• MLE estimators can be biased, but under mild assumptions, they are asyntotically
unbiased! [Asyntotic unbiasedness]

lim
n→∞

E [Tn] = θ

• If T is the MLE estimator of θ and g() is an invertible function, then g(T ) is the MLE
estimator of g(θ) [Invariance principle]

I E.g., MLE of σ for normal data is
√

1
n

∑n
i=1(xi − µ)2

I but, E [T ] = θ does NOT necessarily imply E [g(T )] = g(θ)
I See also Exercise at home

• Under mild assumptions, MLE estimators have asymptotically the smallest variance
among unbiased estimators [Asymptotic minimum variance]
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Minimum Variance Unbiased Estimators (MVUE)
• Consider a density function fθ(x)

Score function and Fisher information
The score function is the random variable:

S(θ) =
∂

∂θ
`(θ) =

n∑
i=1

∂

∂θ
log fθ(Xi )

The Fisher information is the variance of it:

I (θ) = Var(S(θ))

• Since E [S(θ)] = 0, we have I (θ) = E [S(θ)2]
• Cramér-Rao’s bound for unbiased estimator T (under some assumptions):

Var(T ) ≥ 1

I (θ)

• Efficiency of unbiased estimator is e(T ) = 1/(Var(T )I (θ))
• An unbiased estimator T such that Var(T ) = 1/I (θ) (or e(T ) = 1) is called a MVUE
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Example

• Normal distribution and µ parameter: fµ(x) = 1
σ
√

2π
e−

1
2

( x−µ
σ

)2

• Unbiased MLE estimator of µ is T = X̄n = (X1 + . . .+ Xn)/n.

• The Fisher information is:

I (θ) = nE
[
(
∂

∂µ
log fµ(X ))2

]
= nE

[
(
X − µ
σ2

)2
]

=
n

σ4
E
[
(X − µ)2

]
=

n

σ4
Var(X ) =

n

σ4
σ2 =

n

σ2
=

1

Var(X̄n)

where the last equality follows because for i.i.d. random variables Var(X̄n) = σ2/n.
• By taking the reciprocals: Var(X̄n) = 1/I (θ)
• Hence X̄n is a MVUE of µ
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