Statistical Methods for Data Science

Salvatore Ruggieri

Department of Computer Science University of Pisa salvatore.ruggieri@unipi.it

• Tanks' ID drawn at random without replacement from 1,..., N. Objective: estimate N.

- Let x_1, \ldots, x_n be the observed ID's
- E.g., 61, 19, 56, 24, 16 with n = 5
- They are realizations of X_1, \ldots, X_n draws without replacement from $1, \ldots, N$
 - X_1, \ldots, X_n is not a random sample, as they are not independent!
 - The marginal distribution is $X_i \sim U(1, N)$ [prove it, or see Sect. 9.3]

- Let x_1, \ldots, x_n be the observed ID's
- E.g., 61, 19, 56, 24, 16 with n = 5
- They are realizations of X_1, \ldots, X_n draws without replacement from $1, \ldots, N$
 - X_1, \ldots, X_n is not a random sample, as they are not independent!
 - The marginal distribution is $X_i \sim U(1, N)$

[prove it, or see Sect. 9.3]

- Estimator based on the mean
 - we have:

$$E[\bar{X}_n] = E[X_i] = \frac{N+1}{2}$$

We can define an estimator

$$T_1=2\bar{X}_n-1$$

- T_1 is unbiased: $E[T_1] = 2E[\bar{X}_n] 1 = N$
- E.g., $t_1 = 2(61 + 19 + 56 + 24 + 16)/5 1 = 69.4$

- Let x_1, \ldots, x_n be the observed ID's
- E.g., 61, 19, 56, 24, 16 with n = 5

- Let x_1, \ldots, x_n be the observed ID's
- E.g., 61, 19, 56, 24, 16 with n = 5
- Estimator based on the maximum
 - Let $M_n = \max \{X_1, \ldots, X_n\}$
 - ► We have:

[see Sect. 20.1]

$$E[M_n] = n \frac{N+1}{n+1}$$

We can define an estimator

$$T_2 = \frac{n+1}{n}M_n - 1$$

- T_2 is unbiased: $E[T_2] = \frac{n+1}{n}E[M_n] 1 = N$
- E.g., $t_2 = 6/5 \max \{61, 19, 56, 24, 16\} 1 = 72.2$

See R script

- So far, estimators were naturally derived from parameter definition
- A general principle to derive estimators will be shown today

- So far, estimators were naturally derived from parameter definition
- A general principle to derive estimators will be shown today
- Example

Number of cycles	1	2	3	4	5	6	7	8	9	10	11	12	> 12
Smokers	29	16	17	4	3	9	4	5	1	1	1	3	7
Nonsmokers	198	107	55	38	18	22	7	9	5	3	6	6	12

 Table 21.1. Observed numbers of cycles up to pregnancy.

- So far, estimators were naturally derived from parameter definition
- A general principle to derive estimators will be shown today
- Example

Table 21.1. Observed numbers of cycles up to pregnancy.

Number of cycles	1	2	3	4	5	6	7	8	9	10	11	12	> 12
Smokers	29	16	17	4	3	9	4	5	1	1	1	3	7
Nonsmokers	198	107	55	38	18	22	7	9	5	3	6	6	12

• Assume that the data is generated from geometric distributions

$$P(X_i = k) = (1 - p)^{k-1}p$$

- So far, estimators were naturally derived from parameter definition
- A general principle to derive estimators will be shown today
- Example

Table 21.1. Observed numbers of cycles up to pregnancy.

Number of cycles	1	2	3	4	5	6	7	8	9	10	11	12	> 12
Smokers	29	16	17	4	3	9	4	5	1	1	1	3	7
Nonsmokers	198	107	55	38	18	22	7	9	5	3	6	6	12

Assume that the data is generated from geometric distributions

$$P(X_i = k) = (1 - p)^{k-1}p$$

- What is an estimator for *p*?
 - E.g., since $p = P(X_i = 1)$, we could use $S = \frac{|\{i \mid X_i = 1\}|}{n}$, and show E[S] = p
 - ▶ p = 29/100 for smokers, and p = 198/486 = 0.41 for non-smokers
 - But we did not use all of the available data!

[parametric inference]

The maximum likelihood principle

Given a dataset, choose the parameter(s) of interest in such a way that the data are most likely.

The maximum likelihood principle

Given a dataset, choose the parameter(s) of interest in such a way that the data are most likely.

• Reconsider the example:

Number of cycles	1	2	3	4	5	6	7	8	9	10	11	12	> 12
Smokers	29	16	17	4	3	9	4	5	1	1	1	3	7
Nonsmokers	198	107	55	38	18	22	7	9	5	3	6	6	12

Table 21.1. Observed numbers of cycles up to pregnancy.

The maximum likelihood principle

Given a dataset, choose the parameter(s) of interest in such a way that the data are most likely.

• Reconsider the example:

Table 21.1. Observed numbers of cycles up to pregnancy.

Number of cycles	1	2	3	4	5	6	7	8	9	10	11	12	> 12
Smokers	29	16	17	4	3	9	4	5	1	1	1	3	7
Nonsmokers	198	107	55	38	18	22	7	9	5	3	6	6	12

• For k = 1, ..., 12, $P(X_i = k) = (1 - p)^{k-1}p$. Moreover, $P(X_i > 12) = (1 - p)^{12}$

The maximum likelihood principle

Given a dataset, choose the parameter(s) of interest in such a way that the data are most likely.

Reconsider the example:

Table 21.1. Observed numbers of cycles up to pregnancy.

Number of cycles	1	2	3	4	5	6	7	8	9	10	11	12	> 12
Smokers	29	16	17	4	3	9	4	5	1	1	1	3	7
Nonsmokers	198	107	55	38	18	22	7	9	5	3	6	6	12

- For k = 1, ..., 12, $P(X_i = k) = (1 p)^{k-1}p$. Moreover, $P(X_i > 12) = (1 p)^{12}$
- Since the X_i 's are independent, we can write the probability of observing the dataset as:

$$L(p) = C \cdot P(X_i = 1)^{29} \cdot P(X_i = 2)^{16} \cdot \ldots \cdot P(X_i = 12)^3 \cdot P(X_i > 12)^7 = Cp^{93}(1-p)^{322}$$

• ML principle: choose $\hat{p} = argmax_p L(p)$

• ML principle: choose $\hat{p} = argmax_p L(p) = argmax_p C p^{93} (1-p)^{322}$

- ML principle: choose $\hat{p} = argmax_p L(p) = argmax_p C p^{93} (1-p)^{322}$
- $L'(p) = C(93p^{92}(1-p)^{322} 322p^{93}(1-p)^{321}) = Cp^{92}(1-p)^{321}(93-415p)$

- ML principle: choose $\hat{p} = \operatorname{argmax}_p L(p) = \operatorname{argmax}_p C p^{93} (1-p)^{322}$
- $L'(p) = C(93p^{92}(1-p)^{322} 322p^{93}(1-p)^{321}) = Cp^{92}(1-p)^{321}(93-415p)$
- L'(p) = 0 for p = 0 or p = 1 or p = 93/415 = 0.224

- ML principle: choose $\hat{p} = argmax_p L(p) = argmax_p C p^{93} (1-p)^{322}$
- $L'(p) = C(93p^{92}(1-p)^{322} 322p^{93}(1-p)^{321}) = Cp^{92}(1-p)^{321}(93-415p)$
- L'(p) = 0 for p = 0 or p = 1 or p = 93/415 = 0.224
- ML estimate is $argmax_pL(p) = 0.224 < 0.41$ (estimate using S)

- ML principle: choose $\hat{p} = \operatorname{argmax}_p L(p) = \operatorname{argmax}_p C p^{93} (1-p)^{322}$
- $L'(p) = C(93p^{92}(1-p)^{322} 322p^{93}(1-p)^{321}) = Cp^{92}(1-p)^{321}(93-415p)$
- L'(p) = 0 for p = 0 or p = 1 or p = 93/415 = 0.224
- ML estimate is $argmax_p L(p) = 0.224 < 0.41$ (estimate using S)
- Alternative strategy for maximization

$$argmax_p L(p) = argmax_p \log L(p)$$

- ML principle: choose $\hat{p} = \operatorname{argmax}_{p} L(p) = \operatorname{argmax}_{p} C p^{93} (1-p)^{322}$
- $L'(p) = C(93p^{92}(1-p)^{322} 322p^{93}(1-p)^{321}) = Cp^{92}(1-p)^{321}(93-415p)$
- L'(p) = 0 for p = 0 or p = 1 or p = 93/415 = 0.224
- ML estimate is $argmax_pL(p) = 0.224 < 0.41$ (estimate using S)
- Alternative strategy for maximization

$$argmax_pL(p) = argmax_p\log L(p)$$

• $\log L(p) = \log C + 93 \log p + 322 \log (1-p)$

- ML principle: choose $\hat{p} = \operatorname{argmax}_{p} L(p) = \operatorname{argmax}_{p} C p^{93} (1-p)^{322}$
- $L'(p) = C(93p^{92}(1-p)^{322} 322p^{93}(1-p)^{321}) = Cp^{92}(1-p)^{321}(93-415p)$
- L'(p) = 0 for p = 0 or p = 1 or p = 93/415 = 0.224
- ML estimate is $argmax_pL(p) = 0.224 < 0.41$ (estimate using S)
- Alternative strategy for maximization

$$argmax_pL(p) = argmax_p\log L(p)$$

- $\log L(p) = \log C + 93 \log p + 322 \log (1-p)$
- $\log' L(p) = \frac{93}{p} \frac{322}{1-p}$

- ML principle: choose $\hat{p} = \operatorname{argmax}_p L(p) = \operatorname{argmax}_p C p^{93} (1-p)^{322}$
- $L'(p) = C(93p^{92}(1-p)^{322} 322p^{93}(1-p)^{321}) = Cp^{92}(1-p)^{321}(93-415p)$
- L'(p) = 0 for p = 0 or p = 1 or p = 93/415 = 0.224
- ML estimate is $argmax_pL(p) = 0.224 < 0.41$ (estimate using S)
- Alternative strategy for maximization

$$argmax_pL(p) = argmax_p\log L(p)$$

- $\log L(p) = \log C + 93 \log p + 322 \log (1-p)$
- $\log' L(p) = \frac{93}{p} \frac{322}{1-p}$
- $\log' L(p) = 0$ for 322p = 93(1 p), i.e., p = 93/(322 + 93) = 0.224

See R script

Likelihood and log-likelihood

• Let x_1, \ldots, x_n be realization of a random sample X_1, \ldots, X_n

Likelihood and log-likelihood functions

Let $f_{\theta}(x)$ be the density/p.m.f. of the distribution of $X'_i s$, with parameter θ . The likelihood function is:

$$L(\theta) = P(X_1 = x_1, \dots, X_n = x_n) = \prod_{i=1}^n f_{\theta}(x_i)$$

and the log-likelihood function is:

$$\ell(heta) = \log L(heta) = \sum_{i=1} \log f_{ heta}(x_i)$$

n

Likelihood and log-likelihood

• Let x_1, \ldots, x_n be realization of a random sample X_1, \ldots, X_n

Likelihood and log-likelihood functions

Let $f_{\theta}(x)$ be the density/p.m.f. of the distribution of $X'_i s$, with parameter θ . The likelihood function is:

$$L(\theta) = P(X_1 = x_1, \dots, X_n = x_n) = \prod_{i=1}^{n} f_{\theta}(x_i)$$

and the log-likelihood function is:

$$\ell(heta) = \log L(heta) = \sum_{i=1} \log f_{ heta}(x_i)$$

MAXIMUM LIKELIHOOD ESTIMATES. The maximum likelihood estimate of θ is the value $t = h(x_1, x_2, \dots, x_n)$ that maximizes the likelihood function $L(\theta)$. The corresponding random variable

$$T = h(X_1, X_2, \dots, X_n)$$

is called the maximum likelihood estimator for θ .

- Random sample of $Exp(\lambda)$
- Since $f_{\lambda}(x) = \lambda e^{-\lambda x}$ for $x \ge 0$:

 $E[X] = 1/\lambda$

$$\ell(\lambda) = \sum_{i=1}^{n} (\log \lambda - \lambda x_i) = n \log \lambda - \lambda (x_1 + \ldots + x_n) = n (\log \lambda - \lambda \overline{x}_n)$$

- Random sample of $Exp(\lambda)$
- Since $f_{\lambda}(x) = \lambda e^{-\lambda x}$ for $x \ge 0$:

$$\ell(\lambda) = \sum_{i=1}^{n} (\log \lambda - \lambda x_i) = n \log \lambda - \lambda (x_1 + \ldots + x_n) = n(\log \lambda - \lambda \overline{x}_n)$$

•
$$\ell'(\lambda) = 0$$
 iff $n(1/\lambda - \bar{x}_n) = 0$ iff $\lambda = 1/\bar{x}_n$

 $E[X] = 1/\lambda$

- Random sample of $Exp(\lambda)$
- Since $f_{\lambda}(x) = \lambda e^{-\lambda x}$ for $x \ge 0$:

$$\ell(\lambda) = \sum_{i=1}^{n} (\log \lambda - \lambda x_i) = n \log \lambda - \lambda (x_1 + \ldots + x_n) = n (\log \lambda - \lambda \overline{x}_n)$$

•
$$\ell'(\lambda) = 0$$
 iff $n(1/\lambda - \bar{x}_n) = 0$ iff $\lambda = 1/\bar{x}_n$

• $T = 1/\bar{x}_n$ is the MLE of λ for a $Exp(\lambda)$ -distributed random sample

 $E[X] = 1/\lambda$

- Random sample of $Exp(\lambda)$ $E[X] = 1/\lambda$
- Since $f_{\lambda}(x) = \lambda e^{-\lambda x}$ for $x \ge 0$:

$$\ell(\lambda) = \sum_{i=1}^{n} (\log \lambda - \lambda x_i) = n \log \lambda - \lambda (x_1 + \ldots + x_n) = n(\log \lambda - \lambda \overline{x}_n)$$

•
$$\ell'(\lambda) = 0$$
 iff $n(1/\lambda - \bar{x}_n) = 0$ iff $\lambda = 1/\bar{x}_n$

- $T = 1/\bar{x}_n$ is the MLE of λ for a $Exp(\lambda)$ -distributed random sample
- It is biased!: $E[T] \ge 1/E[ar{X}_n] = \lambda$

[Jensen's inequality]

- Random sample of $Exp(\lambda)$ $E[X] = 1/\lambda$
- Since $f_{\lambda}(x) = \lambda e^{-\lambda x}$ for $x \ge 0$:

$$\ell(\lambda) = \sum_{i=1}^{n} (\log \lambda - \lambda x_i) = n \log \lambda - \lambda (x_1 + \ldots + x_n) = n (\log \lambda - \lambda \overline{x}_n)$$

•
$$\ell'(\lambda) = 0$$
 iff $n(1/\lambda - \bar{x}_n) = 0$ iff $\lambda = 1/\bar{x}_n$

- $T = 1/\bar{x}_n$ is the MLE of λ for a $Exp(\lambda)$ -distributed random sample
- It is biased!: $E[\mathcal{T}] \geq 1/E[ar{X}_n] = \lambda$

[Jensen's inequality]

- Exercise at home
 - show that \bar{X}_n is an unbiased MLE of θ for a $Exp(1/\theta)$ -distributed random sample

Example: upper point of a uniform distribution

• Dataset: $x_1 = 0.98, x_2 = 1.57, x_3 = 0.31$ from $U(0, \theta)$ for unknown $\theta > 0$

Example: upper point of a uniform distribution

- Dataset: $x_1 = 0.98, x_2 = 1.57, x_3 = 0.31$ from $U(0, \theta)$ for unknown $\theta > 0$
- $f_{\theta}(x) = 1/\theta$ for $0 \le x \le \theta$ and $f_{\theta}(x) = 0$ otherwise

$$L(\theta) = f_{\theta}(x_1)f_{\theta}(x_2)f_{\theta}(x_3) = \begin{cases} \frac{1}{\theta^3} & \text{if } \theta \geq \max\{x_1, x_2, x_3\} = 1.57\\ 0 & \text{otherwise} \end{cases}$$

Example: upper point of a uniform distribution

- Dataset: $x_1 = 0.98, x_2 = 1.57, x_3 = 0.31$ from $U(0, \theta)$ for unknown $\theta > 0$
- $f_{\theta}(x) = 1/\theta$ for $0 \le x \le \theta$ and $f_{\theta}(x) = 0$ otherwise

$$L(\theta) = f_{\theta}(x_1)f_{\theta}(x_2)f_{\theta}(x_3) = \begin{cases} \frac{1}{\theta^3} & \text{if } \theta \geq \max\{x_1, x_2, x_3\} = 1.57\\ 0 & \text{otherwise} \end{cases}$$

• In general, MLE estimator is $\max\{X_1, \ldots, X_n\}$

• Random sample of $N(\mu, \sigma^2)$

- Random sample of $N(\mu, \sigma^2)$
- MLE of $\theta = (\mu, \sigma^2)$ where $f_{\mu, \sigma^2}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ [we work on σ^2 , not on σ]

$$\ell(\mu,\sigma^2) = -n\log\sigma - n\log\sqrt{2\pi} - \frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \mu)^2$$

- Random sample of $N(\mu, \sigma^2)$
- MLE of $\theta = (\mu, \sigma^2)$ where $f_{\mu, \sigma^2}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ [we work on σ^2 , not on σ]

$$\ell(\mu,\sigma^2) = -n\log\sigma - n\log\sqrt{2\pi} - \frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \mu)^2$$

• Partial derivatives:

$$\frac{d}{d\mu}\ell(\mu,\sigma) = \frac{n}{\sigma^2}(\bar{x}_n - \mu) \qquad \qquad \frac{d}{d\sigma^2}\ell(\mu,\sigma) = \frac{1}{2\sigma^2}\left(\frac{1}{\sigma^2}\sum_{i=1}^n(x_i - \mu)^2 - n\right)$$

- Random sample of $N(\mu, \sigma^2)$
- MLE of $\theta = (\mu, \sigma^2)$ where $f_{\mu, \sigma^2}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ [we work on σ^2 , not on σ]

$$\ell(\mu,\sigma^2) = -n\log\sigma - n\log\sqrt{2\pi} - \frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \mu)^2$$

• Partial derivatives:

$$\frac{d}{d\mu}\ell(\mu,\sigma) = \frac{n}{\sigma^2}(\bar{x}_n - \mu) \qquad \qquad \frac{d}{d\sigma^2}\ell(\mu,\sigma) = \frac{1}{2\sigma^2}\left(\frac{1}{\sigma^2}\sum_{i=1}^n(x_i - \mu)^2 - n\right)$$

• Partial derivatives at 0 for $\mu = \bar{x}_n$ and $\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2$ [prove it is a maximum]

- Random sample of $N(\mu, \sigma^2)$
- MLE of $\theta = (\mu, \sigma^2)$ where $f_{\mu, \sigma^2}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ [we work on σ^2 , not on σ]

$$\ell(\mu,\sigma^2) = -n\log\sigma - n\log\sqrt{2\pi} - \frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \mu)^2$$

Partial derivatives:

$$\frac{d}{d\mu}\ell(\mu,\sigma) = \frac{n}{\sigma^2}(\bar{x}_n - \mu) \qquad \qquad \frac{d}{d\sigma^2}\ell(\mu,\sigma) = \frac{1}{2\sigma^2}\left(\frac{1}{\sigma^2}\sum_{i=1}^n(x_i - \mu)^2 - n\right)$$

- Partial derivatives at 0 for $\mu = \bar{x}_n$ and $\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i \mu)^2$ [prove it is a maximum]
- MLE estimators $\mu = \bar{X}_n$ (unbiased) and $\sigma^2 = \frac{1}{n} \sum_{i=1}^n (X_i \mu)^2$ (biased)

See R script

Loss functions (to be minimized)

• Negative log-likelihood (nLL)

$$nLL(heta) = -\ell(heta)$$

• Akaike information criterion (AIC), balances model fit against model simplicity

$$AIC(\theta) = 2|\theta| - 2\ell(\theta)$$

• Bayesian information criterion (BIC), stronger balances over model simplicity

$$BIC(\theta) = |\theta| \log n - 2\ell(\theta)$$

Properties of MLE estimators

• MLE estimators can be biased, but under mild assumptions, they are asyntotically unbiased! [Asyntotic unbiasedness]

$$\lim_{n\to\infty} E[T_n] = \theta$$

Properties of MLE estimators

 MLE estimators can be biased, but under mild assumptions, they are asyntotically unbiased! [Asyntotic unbiasedness]

$$\lim_{n\to\infty} E[T_n] = \theta$$

- If T is the MLE estimator of θ and g() is an invertible function, then g(T) is the MLE estimator of $g(\theta)$ [Invariance principle]
 - E.g., MLE of σ for normal data is $\sqrt{\frac{1}{n}\sum_{i=1}^{n}(x_i-\mu)^2}$
 - ▶ but, $E[T] = \theta$ does **NOT** necessarily imply $E[g(T)] = g(\theta)$
 - See also Exercise at home

Properties of MLE estimators

 MLE estimators can be biased, but under mild assumptions, they are asyntotically unbiased! [Asyntotic unbiasedness]

$$\lim_{n\to\infty} E[T_n] = \theta$$

- If T is the MLE estimator of θ and g() is an invertible function, then g(T) is the MLE estimator of g(θ)
 [Invariance principle]
 - E.g., MLE of σ for normal data is $\sqrt{\frac{1}{n}\sum_{i=1}^{n}(x_i-\mu)^2}$
 - ▶ but, $E[T] = \theta$ does **NOT** necessarily imply $E[g(T)] = g(\theta)$
 - See also Exercise at home
- Under mild assumptions, MLE estimators have asymptotically the smallest variance among unbiased estimators [Asymptotic minimum variance]

• Consider a density function $f_{\theta}(x)$

Score function and Fisher information

The *score function* is the random variable:

$$S(heta) = rac{\partial}{\partial heta} \ell(heta) = \sum_{i=1}^n rac{\partial}{\partial heta} \log f_ heta(X_i)$$

The Fisher information is the variance of it: $I(\theta) = Var(S(\theta))$

42 / 49

• Consider a density function $f_{\theta}(x)$

Score function and Fisher information

The *score function* is the random variable:

$$S(heta) = rac{\partial}{\partial heta} \ell(heta) = \sum_{i=1}^n rac{\partial}{\partial heta} \log f_ heta(X_i)$$

The Fisher information is the variance of it: $I(\theta) = Var(S(\theta))$

• Since $E[S(\theta)] = 0$, we have $I(\theta) = E[S(\theta)^2]$

• Consider a density function $f_{\theta}(x)$

Score function and Fisher information

The *score function* is the random variable:

$$S(heta) = rac{\partial}{\partial heta} \ell(heta) = \sum_{i=1}^n rac{\partial}{\partial heta} \log f_ heta(X_i)$$

The Fisher information is the variance of it:

 $I(\theta) = Var(S(\theta))$

- Since $E[S(\theta)] = 0$, we have $I(\theta) = E[S(\theta)^2]$
- Cramér-Rao's bound for unbiased estimator T (under some assumptions):

$$Var(T) \geq rac{1}{I(heta)}$$

• Consider a density function $f_{\theta}(x)$

Score function and Fisher information

The *score function* is the random variable:

$$S(heta) = rac{\partial}{\partial heta} \ell(heta) = \sum_{i=1}^n rac{\partial}{\partial heta} \log f_ heta(X_i)$$

The Fisher information is the variance of it:

 $I(\theta) = Var(S(\theta))$

- Since $E[S(\theta)] = 0$, we have $I(\theta) = E[S(\theta)^2]$
- Cramér-Rao's bound for unbiased estimator T (under some assumptions):

$$Var(T) \geq \frac{1}{I(\theta)}$$

• Efficiency of unbiased estimator is $e(T) = 1/(Var(T)I(\theta))$

• Consider a density function $f_{\theta}(x)$

Score function and Fisher information

The *score function* is the random variable:

$$S(heta) = rac{\partial}{\partial heta} \ell(heta) = \sum_{i=1}^n rac{\partial}{\partial heta} \log f_ heta(X_i)$$

The Fisher information is the variance of it:

$$I(\theta) = Var(S(\theta))$$

- Since $E[S(\theta)] = 0$, we have $I(\theta) = E[S(\theta)^2]$
- Cramér-Rao's bound for unbiased estimator T (under some assumptions):

$$Var(T) \geq rac{1}{I(heta)}$$

- Efficiency of unbiased estimator is $e(T) = 1/(Var(T)I(\theta))$
- An unbiased estimator T such that $Var(T) = 1/I(\theta)$ (or e(T) = 1) is called a *MVUE*

- Normal distribution and μ parameter: $f_{\mu}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$
- Unbiased MLE estimator of μ is $T = \overline{X}_n = (X_1 + \ldots + X_n)/n$.

- Normal distribution and μ parameter: $f_{\mu}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$
- Unbiased MLE estimator of μ is $T = \overline{X}_n = (X_1 + \ldots + X_n)/n$.
- The Fisher information is:

$$I(\theta) = n \mathbb{E}\left[\left(\frac{\partial}{\partial \mu} \log f_{\mu}(X)\right)^{2}\right]$$

$$= n \mathbb{E}\left[\left(\frac{X-\mu}{\sigma^{2}}\right)^{2}\right]$$

$$= \frac{n}{\sigma^{4}} \mathbb{E}\left[(X-\mu)^{2}\right]$$

$$= \frac{n}{\sigma^{4}} \operatorname{Var}(X) = \frac{n}{\sigma^{4}} \sigma^{2} = \frac{n}{\sigma^{2}} = \frac{1}{\operatorname{Var}(\bar{X}_{n})}$$

where the last equality follows because for i.i.d. random variables $\operatorname{Var}(\bar{X}_n) = \sigma^2/n$.

- Normal distribution and μ parameter: $f_{\mu}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$
- Unbiased MLE estimator of μ is $T = \overline{X}_n = (X_1 + \ldots + X_n)/n$.
- The Fisher information is:

$$I(\theta) = n \mathbb{E}\left[\left(\frac{\partial}{\partial \mu} \log f_{\mu}(X)\right)^{2}\right]$$

$$= n \mathbb{E}\left[\left(\frac{X-\mu}{\sigma^{2}}\right)^{2}\right]$$

$$= \frac{n}{\sigma^{4}} \mathbb{E}\left[(X-\mu)^{2}\right]$$

$$= \frac{n}{\sigma^{4}} \operatorname{Var}(X) = \frac{n}{\sigma^{4}} \sigma^{2} = \frac{n}{\sigma^{2}} = \frac{1}{\operatorname{Var}(\bar{X}_{n})}$$

where the last equality follows because for i.i.d. random variables $Var(\bar{X}_n) = \sigma^2/n$.

- By taking the reciprocals: $Var(\bar{X}_n) = 1/I(\theta)$
- Hence \bar{X}_n is a MVUE of μ