# Statistical Methods for Data Science

#### Salvatore Ruggieri

Department of Computer Science University of Pisa salvatore.ruggieri@unipi.it

#### Example: number of German tanks



• Tanks' ID drawn at random without replacement from 1,..., N. Objective: estimate N.

### Example: number of German tanks

- Let  $x_1, \ldots, x_n$  be the observed ID's
- E.g., 61, 19, 56, 24, 16 with n = 5
- They are realizations of  $X_1, \ldots, X_n$  draws with replacement from  $1, \ldots, N$ 
  - $X_1, \ldots, X_n$  is not a random sample, as they are not independent!
  - The marginal distribution is  $X_i \sim U(1, N)$

[prove it, or see Sect. 9.3]

- Estimator based on the mean
  - we have:

$$E[\bar{X}_n] = E[X_i] = \frac{N+1}{2}$$

We can define an estimator

$$T_1=2\bar{X}_n-1$$

- $T_1$  is unbiased:  $E[T_1] = 2E[\bar{X}_n] 1 = N$
- E.g.,  $t_1 = 2(61 + 19 + 56 + 24 + 16)/5 1 = 69.4$

### Example: number of German tanks

- Let  $x_1, \ldots, x_n$  be the observed ID's
- E.g., 61, 19, 56, 24, 16 with n = 5
- Estimator based on the maximum
  - Let  $M_n = \max \{X_1, \ldots, X_n\}$
  - ► We have:

[see Sect. 20.1]

$$E[M_n] = n \frac{N+1}{n+1}$$

We can define an estimator

$$T_2 = \frac{n+1}{n}M_n - 1$$

- $T_2$  is unbiased:  $E[T_2] = \frac{n+1}{n}E[M_n] 1 = N$
- E.g.,  $t_2 = 6/5 \max \{61, 19, 56, 24, 16\} 1 = 72.2$

#### See R script

#### Estimators

- So far, estimators were naturally derived from parameter definition
- A general principle to derive estimators will be shown today
- Example

Table 21.1. Observed numbers of cycles up to pregnancy.

| Number of cycles | 1   | <b>2</b> | 3  | 4  | 5  | 6  | 7 | 8        | 9 | 10 | 11 | 12 | > 12 |
|------------------|-----|----------|----|----|----|----|---|----------|---|----|----|----|------|
| Smokers          | 29  | 16       | 17 | 4  | 3  | 9  | 4 | <b>5</b> | 1 | 1  | 1  | 3  | 7    |
| Nonsmokers       | 198 | 107      | 55 | 38 | 18 | 22 | 7 | 9        | 5 | 3  | 6  | 6  | 12   |

Assume that the data is generated from geometric distributions

$$P(X_i = k) = (1 - p)^{k-1}p$$

- What is an estimator for *p*?
  - E.g., since  $p = P(X_i = 1)$ , we could use  $S = \frac{|\{i \mid X_i = 1\}|}{n}$ , and show E[S] = p
  - ▶ p = 29/100 for smokers, and p = 198/486 = 0.41 for non-smokers
  - But we did not use all of the available data!

[parametric inference]

#### The maximum likelihood principle

#### The maximum likelihood principle

Given a dataset, choose the parameter(s) of interest in such a way that the data are most likely.

Reconsider the example:

Table 21.1. Observed numbers of cycles up to pregnancy.

| Number of cycles | 1   | 2   | 3  | 4  | 5  | 6  | 7 | 8        | 9        | 10 | 11 | 12 | > 12 |
|------------------|-----|-----|----|----|----|----|---|----------|----------|----|----|----|------|
| Smokers          | 29  | 16  | 17 | 4  | 3  | 9  | 4 | <b>5</b> | 1        | 1  | 1  | 3  | 7    |
| Nonsmokers       | 198 | 107 | 55 | 38 | 18 | 22 | 7 | 9        | <b>5</b> | 3  | 6  | 6  | 12   |

- For k = 1, ..., 12,  $P(X_i = k) = (1 p)^{k-1}p$ . Moreover,  $P(X_i > 12) = (1 p)^{12}$
- Since the  $X_i$ 's are independent, we can write the probability of observing the dataset as:

$$L(p) = C \cdot P(X_i = 1)^{29} \cdot P(X_i = 2)^{16} \cdot \ldots \cdot P(X_i = 12)^3 \cdot P(X_i > 12)^7 = Cp^{93}(1-p)^{322}$$

• ML principle: choose  $\hat{p} = argmax_p L(p)$ 

### Example

- ML principle: choose  $\hat{p} = \operatorname{argmax}_{p} L(p) = \operatorname{argmax}_{p} C p^{93} (1-p)^{322}$
- $L'(p) = C(93p^{92}(1-p)^{322} 322p^{93}(1-p)^{321}) = Cp^{92}(1-p)^{321}(93-415p)$
- L'(p) = 0 for p = 0 or p = 1 or p = 93/415 = 0.224
- ML estimate is  $argmax_pL(p) = 0.224 < 0.41$  (estimate using S)
- Alternative strategy for maximization

$$argmax_pL(p) = argmax_p\log L(p)$$

- $\log L(p) = \log C + 93 \log p + 322 \log (1-p)$
- $\log' L(p) = \frac{93}{p} \frac{322}{1-p}$
- $\log' L(p) = 0$  for 322p = 93(1 p), i.e., p = 93/(322 + 93) = 0.224

#### See R script

#### Likelihood and log-likelihood

• Let  $x_1, \ldots, x_n$  be realization of a random sample  $X_1, \ldots, X_n$ 

#### Likelihood and log-likelihood functions

Let  $f_{\theta}(x)$  be the density/p.m.f. of the distribution of  $X'_i s$ , with parameter  $\theta$ . The likelihood function is:

$$L(\theta) = P(X_1 = x_1, \dots, X_n = x_n) = \prod_{i=1}^{n} f_{\theta}(x_i)$$

and the log-likelihood function is:

$$\ell( heta) = \log L( heta) = \sum_{i=1} f_{ heta}(x_i)$$

MAXIMUM LIKELIHOOD ESTIMATES. The maximum likelihood estimate of  $\theta$  is the value  $t = h(x_1, x_2, \dots, x_n)$  that maximizes the likelihood function  $L(\theta)$ . The corresponding random variable

$$T = h(X_1, X_2, \dots, X_n)$$

is called the maximum likelihood estimator for  $\theta$ .

### Example: MLE of exponential distribution

- Random sample of  $Exp(\lambda)$   $E[X] = 1/\lambda$
- Since  $f_{\lambda}(x) = \lambda e^{-\lambda x}$  for  $x \ge 0$ :

$$\ell(\lambda) = \sum_{i=1}^{n} (\log \lambda - \lambda x_i) = n \log \lambda - \lambda (x_1 + \ldots + x_n) = n(\log \lambda - \lambda \overline{x}_n)$$

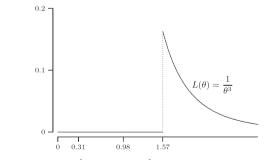
• 
$$\ell'(\lambda) = 0$$
 iff  $n(1/\lambda - \bar{x}_n) = 0$  iff  $\lambda = 1/\bar{x}_n$ 

- $T = 1/\bar{x}_n$  is the MLE of  $\lambda$  for a  $Exp(\lambda)$ -distributed random sample
- $E[T] \ge 1/E[\bar{X}_n] = \lambda$  [Jensen's inequality]
- Exercise at home
  - show that  $\bar{X}_n$  is an unbiased MLE of  $\theta$  for a  $Exp(1/\theta)$ -distributed random sample

### Example: upper point of a uniform distribution

- Dataset:  $x_1 = 0.98, x_2 = 1.57, x_3 = 0.31$  from  $U(0, \theta)$  for unknown  $\theta > 0$
- $f_{\theta}(x) = 1/\theta$  for  $0 \le x \le \theta$  and  $f_{\theta}(x) = 0$  otherwise

$$L(\theta) = f_{\theta}(x_1)f_{\theta}(x_2)f_{\theta}(x_3) = \begin{cases} \frac{1}{\theta^3} & \text{if } \theta \geq \max\{x_1, x_2, x_3\} = 1.57\\ 0 & \text{otherwise} \end{cases}$$



• In general, MLE estimator is  $\max\{X_1, \ldots, X_n\}$ 

### Example: MLE of normal distribution

- Random sample of  $N(\mu, \sigma^2)$
- MLE of  $\theta = (\mu, \sigma^2)$  where  $f_{\mu, \sigma^2}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$  [we work on  $\sigma^2$ , not on  $\sigma$ ]

$$\ell(\mu,\sigma^2) = -n\log\sigma - n\log\sqrt{2\pi} - \frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \mu)^2$$

• Partial derivatives:

$$\frac{d}{d\mu}\ell(\mu,\sigma) = \frac{n}{\sigma^2}(\bar{x}_n - \mu) \qquad \qquad \frac{d}{d\sigma^2}\ell(\mu,\sigma) = \frac{1}{2\sigma^2}\left(\frac{1}{\sigma^2}\sum_{i=1}^n(x_i - \mu)^2 - n\right)$$

- Partial derivatives at 0 for  $\mu = \bar{x}_n$  and  $\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i \mu)^2$  [prove it is a maximum]
- MLE estimators  $\mu = \bar{X}_n$  (unbiased) and  $\sigma^2 = \frac{1}{n} \sum_{i=1}^n (X_i \mu)^2$  (biased)

#### See R script

### Loss functions (to be minimized)

• Negative log-likelihood (nLL)

$$nLL( heta) = -\ell( heta)$$

• Akaike information criterion (AIC), balances model fit against model simplicity

$$AIC(\theta) = 2|\theta| - 2\ell(\theta)$$

• Bayesian information criterion (BIC), stronger balances over model simplicity

$$BIC(\theta) = 2|\theta| \log n - 2\ell(\theta)$$

# Properties of MLE estimators

 MLE estimators can be biased, but under mild assumptions, they are asyntotically unbiased! [Asyntotic unbiasedness]

$$\lim_{n\to\infty} E[T_n] = \theta$$

- If T is the MLE estimator of  $\theta$  and g() is an invertible function, then g(T) is the MLE estimator of  $g(\theta)$  [Invariance principle]
  - E.g., MLE of  $\sigma$  for normal data is  $\sqrt{\frac{1}{n}\sum_{i=1}^{n}(x_i-\mu)^2}$
  - ▶ but,  $E[T] = \theta$  does **NOT** necessarily imply  $E[g(T)] = g(\theta)$
  - See also Exercise at home
- Under mild assumptions, MLE estimators have asymptotically the smallest variance among unbiased estimators [Asymptotic minimum variance]

# Minimum Variance Unbiased Estimators (MVUE)

• Consider a density function  $f_{\theta}(x)$ 

Score function and Fisher information

The *score function* is the random variable:

$$S( heta) = rac{\partial}{\partial heta} \ell( heta) = \sum_{i=1}^n rac{\partial}{\partial heta} \log f_ heta(X_i)$$

The Fisher information is the variance of it:

$$I(\theta) = Var(S(\theta))$$

- Since  $E[S(\theta)] = 0$ , we have  $I(\theta) = E[S(\theta)^2]$
- Cramér-Rao's bound for unbiased estimator T (under some assumptions):

$$Var(T) \geq rac{1}{I( heta)}$$

- Efficiency of unbiased estimator is  $e(T) = 1/(Var(T)I(\theta))$
- An unbiased estimator T such that  $Var(T) = 1/I(\theta)$  (or e(T) = 1) is called a MVUE

### Example

- Normal distribution and  $\mu$  parameter:  $f_{\mu}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$
- Unbiased MLE estimator of  $\mu$  is  $T = \overline{X}_n = (X_1 + \ldots + X_n)/n$ .
- The Fisher information is:

$$I(\theta) = n \mathbb{E} \left[ \left( \frac{\partial}{\partial \mu} \log f_{\mu}(X) \right)^{2} \right]$$
  
$$= n \mathbb{E} \left[ \left( \frac{X - \mu}{\sigma^{2}} \right)^{2} \right]$$
  
$$= \frac{n}{\sigma^{4}} \mathbb{E} \left[ (X - \mu)^{2} \right]$$
  
$$= \frac{n}{\sigma^{4}} \operatorname{Var}(X) = \frac{n}{\sigma^{4}} \sigma^{2} = \frac{n}{\sigma^{2}} = \frac{1}{\operatorname{Var}(\bar{X}_{n})}$$

where the last equality follows because for i.i.d. random variables  $Var(\bar{X}_n) = \sigma^2/n$ .

- By taking the reciprocals:  $Var(\bar{X}_n) = 1/I(\theta)$
- Hence  $\bar{X}_n$  is a MVUE of  $\mu$