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Statistical model for repeated measurement

® A dataset xi,..., X, consists of repeated measurements of a phenomenon we are
interested in understanding

» E.g., measurement of the speed of light

® We model a dataset as the realization of a random sample

Random sample

A random sample is a collection of i.i.d. random variables Xi, ..., X, ~ F(a),
where F() is the distribution and « its parameter(s).

® Challenging questions:

» How to determine E[X], Var(X), or other functions of X?
» How to determine «, assuming to know the form of F?
» How to determine both F and «?
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An example

Table 17.1. Michelson data on the speed of light.

850
1000
960
830
880
880
890
910
890
870

740
980
940
790
880
910
810
920
840
870

900
930
960
810
880
850
810
890
780
810

1070
650
940
880
860
870
820
860
810
740

930
760
880
880
720
840
800
880
760
810

850
810
800
830
720
840
770
720
810
940

950
1000
850
800
620
850
760
840
790
950

980
1000
880
790
860
840
740
850
810
800

980
960
900
760
970
840
750
850
820
810

880
960
840
800
950
840
760
780
850
870

® \What is an estimate

® x; = 850, or min x;,

of the true speed of light?

or max x;, or X, = 852.4 7



An example

® Speed of light dataset
Xi=c+e¢
where ¢; is measurement error with E[¢;] = 0 and Var(e;) = o
We are then interested in E[Xj] = ¢
® How to estimate?

® Use some info. For X = Xi:

E[X]=E[Xi]=¢ Var(X) = Var(X1) =0

Use all info. For X, = (X1 + ...+ X,)/n:

E[X=c  Var(X,) = \/ar’(7X1) -2

® Hence, for n — oo, Var()_(,,) —0
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An estimate t is a value that obtained as a function h() over a dataset xi, ..., X,:

t=h(x1,...,X)

® t =X, = 852.4 is an estimate of the speed of light

® t = x; = 850 is another estimate
® Since x1,...,x, are modelled as realizations of Xi,...,X,, estimates are realizations of

the corresponding sample statistics h(Xi, ..., Xy)

An estimate t = h(xy, ..., X,) is a realization of the random variable:

T = h(X,.... X,)

The random variable T is called an estimator.
e T=X,= (X1 +...,X,)/n is an estimator of the speed of light
® T — Xj is another estimator
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Parameter estimation

® The probability distribution of T is called the sampling distribution of T
® The standard deviation of the sampling distribution is called the standard error (SE)

Unbiased estimator

An estimator T = h(Xi,...,X,) of some parameter © is unbiased if:

E[T]=0

If the difference E[T] — ©, called the bias of T, is non-zero, T is called a biased
estimator.

E[T] > © is a positive bias, E[T] < © is a negative bias

® Sometimes, T is written as é e.g., fi denotes an estimator of p

® \WVhen is an estimator better than another one?

Is there a best possible estimator?
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When is an estimator better than another one?

Efficiency of unbiased estimators

Let T; and T, be unbiased estimators of the same parameter ©. The estimator T,
is more efficient than Ty if:

Var(T,) < Var(T:)

® The relative efficiency of Ty w.r.t. Ty is Var(T1)/Var(T>)
® Speed of light example:

» E[Xi] = E[Xz] = ... = E[X,] = ¢, i.e., all unbiased estimators
® The mean is more efficient than a single value

Var(X,) = o/n < o = Var(X1) gz:g(_(l;

=n
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Unbiased estimators for expectation and variance

UNBIASED ESTIMATORS FOR EXPECTATION AND VARIANCE. Sup-
pose X1, Xo, ..., X, is a random sample from a distribution with

finite expectation x and finite variance o2. Then

X,,L=X1+X2+.“+Xn

n
is an unbiased estimator for p and

2= 13X - X,)°

n—1
i=1

is an unbiased estimator for o2.

® Estimates: sample mean X, and sample variance s> (see previous lesson)

o E[Xa] = (E[X1] + ...+ E[Xa])/n = p and, by CLT, X ~ N(y, o2/n)

® Why division by n — 1 in 527 [Bessel’s correction]
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(1)
(2) Var(X; — Xa) = E[(Xi — Xa)?] = E[X; — Xa]? = E[(X; — X,)’] [by (1)]
(3) X,'—X,,:X,-—%Z'.’ZlXj:X,-—%Xj 1 j= 1J7AIX_ At Xi = j= 1J7$:X
(4) From (3)
v (n—1)? , 1 o_n—-1,
Var(Xi — Xp) = 5o+ ?(n —1)o° = —0
® Therefore:
1 . 1< . 1 -1
21 — X )2 = . — 2_ 2
E[sn]_n_li;E[(x, Xn)?] n_liz_;v;;r(x, X)) = —gn——d*=0

® For normal distribution of Xi's, S2 ~ Gam(n — 1,02) and Var(S?) = n"l

® In general, Var(S52) — 0 when n — oo
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Degree of freedom

® For the estimator V2 =157 (X; — X,)2:

-1 -1
E[V}] = E[-——=S3] = =0

Hence, E[V?] — 02 = —0?/n [Negative bias]
® V2 is asymptotically unbiased, i.e., E[V?] — 2 when n — oo

Intuition on dividing by n — 1
» S2 uses in its definition X,
» Thus, they are not independent _
» 52 can be computed from n— 1 r.v. and the mean X, (the n-th r.v. is implied)

The degrees of freedom for an estimate is the number of values minus the number of
parameters already estimated

Assume that 4 is known. Show that 1 5™ | (X; — 41)? is unbiased [Prove it]
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Unbiasedness does not carry over

® E£[S2] = 02 implies E[S,] =0 ?

® Since g(x) = x?

is convex, by Jensen's inequality:
o® = E[S7] = Elg(5n)] > g(E[Sh]) = E[Sa)?

which implies E[S,] < o [Negative bias]
® In general, if T unbiased for © does not imply g(T) unbiased for g(©)

® A non-parametric (i.e., distribution free) unbiased estimator of o does not exist
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Estimators for the median and quantiles

o T = Med(Xi,...,Xp), for X; with density function f(x)
® Let m be the true median, i.e., F(m) = 0.5: [CLT for medians|
1

for n—>OO7TN N(m7m)

and then for n — oo:
E[Med(X1,...,Xp)] =m
® T = Quantiley(X1,...,X,), for X; with density function f(x)
® Let p quantile be the true quantile, i.e., F(gq) = p: [CLT for quantiles]

p(1—p)
for n — 0o, T ~ N(q, 7 (q)? )

and then for n — oo:
E[Quantilepy(X1,..., Xp)] =p
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Estimator for MAD

® Median of absolute deviations (MAD):

T = MAD(Xy,...,X,) = Med(| X1 — Med(X1, ..., Xa)|,..., | Xn — Med(Xq,...,X)|)
» For X ~ F, the population MAD is Md = G~1(0.5) where |X — F~}(0.5)| ~ G

» For F symmetric, Md = F~1(0.75) — F~1(0.5).
» Md is a more robust measure of scale than standard deviation

® Under mild assumptions: [CLT for MAD]

02
for n — 0o, T ~ N(Md, -L)
n

where o7 is defined in terms of Md, F~1(0.5), F(). Then, for n — oo:

E[MAD(Xy,...,X,)] = Md
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Estimators for correlation

® Pearson's r estimator:

S (X = K) - (i~ V) J_ EIX =) (Y =)

= \/Zle(X,- — )‘()2 (Y= Y)? ox Oy

» Fisher transformation F(r) = arctanh(r) = 1 log 1=~

» Transform a skewed sample into a normalized format
» If X, Y have a bivariate normal distribution:

F(r) ~ N(arctanh(p), )

n—3

Hence:
tanh(E[F(r)]) = p

® Same for Spearman’s correlation (as it is a special case of Pearson’s)
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Estimators for correlation

e Kendall's 75 estimator:

2% sen(Xi — X;) - sgn(Yi — ¥))
v n-(n—1)

© = E[sgn(X1 — X2) - sgn(Y1 — Y2)]

» For n > 10, the sampling distribution is well approximated as:

2(2n+5)
TXy ~ N(@, m)
Hence:
Elry] =©
See R script
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Example: estimating the probability of zero arrivals

e Xi, ..., X,, for n =30, observations:
Xi = no of arrivals (of a packet, of a call, etc.) in a minute
® X; Pois(u), where p(k) = P(X = k) = ‘,‘(—Te‘“ [E[X] = u]

® We want to estimate po = p(0), probability of zero arrivals

® Frequentist-based estimator S:
i1 X =0}

n

S

» Takes values 0/30,1/30,...,30/30 ... may not exactly be pg
» S=Y/nwhere Y = Ix—o+ ...+ Ix,—0 ~ Bin(n, po)
» Hence, E[S] = 2E[Y] = 2py = po [S is unbiased]
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Example: estimating the probability of zero arrivals

® Since pp = p(0) = e™#, we devise an estimator T:

T=eX
» By Jensen's inequality:

E[T] = E[e*)_("] > e EXl = gn = Po

Hence T is biased!
» T =e?/" where Z=X; + ...+ X, is the sum of Poi(y)'s, hence Z ~ Poi(n - 1)

o k
E[T] = Ze_% (n/ﬁ) e = g m(l=e™) _y gmh po for n — oo
p ;

Hence T is asymptotically unbiased! [Exercise 19.9]
See R script
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Example: estimating the probability of zero arrivals

® | et's look at the variances:

_ npo(1—po) _ po(l — po)
n? n

Var(S) = niVar( Y) — 0 for n — o0

Var(T) = E[T?] — E[T]? = ... exercise ... — 0 for n — oo

See R script
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MSE: Mean Squared Error of an estimator

® \What if one estimator is unbiased and the other is biased but with a smaller variance?

The Mean Squared Error of an estimator T for a parameter © is defined as:

MSE(T) = E[(T — 6)’]
An estimator Ty performs better than T, if MSE(Ty) < MSE(T,)
Note that:
MSE(T) = E[(T — E[T]+ E[T] - 0)’] =
= E[(T — E[T])’] + (E[T] - 0)> + 2E[T — E[T]|(E[T] — 0) = Var(T) + (E[T] - 6)°
E[T] — 0 is called the bias of the estimator

Hence, MSE = Var + Bias®
A biased estimator with a small variance may be better than an unbiased one with a large variance!

See R script
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Example: number of German tanks

® Tanks' ID drawn at random without replacement from 1,...  N. Objective: estimate N.
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Example: number of German tanks

® |et x1,...,x, be the observed ID’s
® Eg,h61,19,56,24,16 with n=5
® They are realizations of X, ..., X, draws with replacement from 1,..., N

» Xi,...,X, is not a random sample, as they are not independent!

» The marginal distribution is X; ~ U(1, N) [prove it, or see Sect. 9.3]
e Estimator based on the mean

> we have:

EIR] = E[X] = it

» We can define an estimator _
T =2X,—-1

» Ty is unbiased: E[T;] =2E[X,]—-1=N
» Eg, t; =2(61+19+56+24+16)/5-1=169.4
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Example: number of German tanks

® |et x1,...,x, be the observed ID’s

® Eg,h61,19,56,24 16 with n=5

e Estimator based on the maximum
» Let M, = max{Xy,..., X,}

» We have: [see Sect. 20.1]
N+1
E[M,] =
[M;] N
» We can define an estimator 1
T, = ”t M, —1

» T, is unbiased: E[T,] = 1E[M,] - 1=N

n

» E.g., t, =6/5max{61,19,56,24,16} — 1 = 72.2
See R script
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