Statistical Methods for Data Science

Lesson 12 - Numerical summaries

Salvatore Ruggieri
Department of Computer Science
University of Pisa salvatore.ruggieri@unipi.it

Condensed observations

- Probability models governs some random phenomena
- Confronted with a new phenomenon, we want to learn about the randomness that is associated with it
- Record observations x_{1}, \ldots, x_{n} (a dataset)
- Can be too many: need to condense for easy comprehension and processing
- Numerical summaries:
- Univariate: sample/empirical mean, median, standard deviation, quantiles, MAD
- Multi-variate: Pearson's, Spearman's, Kendall's correlation coefficients

Sample summaries

- Main idea: translate summaries of distributions to samples
- Purpose: Sample summaries should be estimators of the summaries on the generating distribution
- Measures of centrality
- Sample mean:

$$
\bar{x}_{n}=\frac{x_{1}+\ldots+x_{n}}{n} \quad E[X], \mu
$$

- Median for sorted x_{1}, \ldots, x_{n} :

$$
\begin{aligned}
& \qquad \operatorname{Med}\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}x_{\frac{n}{2}+1} & \text { if } n \text { is odd } \\
\left(x_{\frac{n}{2}}+x_{\frac{n}{2}+1}\right) / 2 & \text { if } n \text { is even }\end{cases} \\
& \text { E.g., } \operatorname{Med}(2,3,4)=3 \text { and } \operatorname{Med}(2,3,4,5)=3.5
\end{aligned}
$$

Measures of variability

- Sample variance:

$$
s_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}_{n}\right)^{2} \quad \operatorname{Var}(X), \sigma^{2}
$$

Why $n-1$ and not n ?

- Sample standard deviation:

$$
s_{n}=\sqrt{s_{n}^{2}}
$$

$$
\sqrt{\operatorname{Var}(X)}, \sigma
$$

- Median of absolute deviations (MAD):

$$
\operatorname{MAD}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{Med}\left(\left|x_{1}-\operatorname{Med}\left(x_{1}, \ldots, x_{n}\right)\right|, \ldots,\left|x_{n}-\operatorname{Med}\left(x_{1}, \ldots, x_{n}\right)\right|\right)
$$

- What is $\operatorname{MAD}(X)$ for $X \sim F$?
- For F symmetric and $E[X]=0, M A D(X)=F^{-1}(0.75)$. Hence, $\sigma=c_{F} \cdot M A D$

Order statistics

- The order statistics consist of the same elements in the dataset, but in ascending order
- Let $x_{(1)}, \ldots, x_{(n)}$ be $\operatorname{sort}\left(x_{1}, \ldots, x_{n}\right)$
- Empirical quantiles:

$$
q\left(\frac{i-1}{n-1}\right)=x_{(i)}
$$

E.g., for $2,3,4,5,6, q(0)=2, q(0.25)=3, q(0.5)=4, q(0.75)=5, q(1)=6$

- What is $q(p)$ when p is not in the form above?

$$
q(p)=x_{(k)}+\alpha\left(x_{(k+1)}-x_{(k)}\right)
$$

where $k=\lfloor p \cdot(n-1)+1\rfloor$ and $\alpha=p \cdot(n-1)+1-k$ (remainder)

- This is type $=7$ in R quantile function. There are 9 variants!
- The definition in the textbook is type=6

The box-and-whisker plot

- Axis here is with reference to a standard Normal distribution
- See John Tukey (designed FFT, coined 'bit' \& 'software', and visionary of data science)

Correlation coefficients: Pearson's r

- Correlation is a bivariate analysis that measures the strength of association between two variables and the direction of the relationship.

$$
\rho=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \cdot \operatorname{Var}(Y)}}=\frac{E\left[\left(X-\mu_{X}\right) \cdot\left(Y-\mu_{Y}\right)\right]}{\sigma_{X} \cdot \sigma_{Y}}
$$

- Pearson's (linear/product-moment) correlation coefficient: [support in $[-1,1]$]

$$
r=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) \cdot\left(y_{i}-\bar{y}\right)}{(n-1) \cdot s_{x} \cdot s_{y}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) \cdot\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \cdot \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}}
$$

Uncorrelated

Positively correlated

Negatively correlated

- Computational cost is $O(n)^{\mathrm{U}}$

Correlation coefficients: Spearman's ρ

- Pearsons's r asseses linear relationships over continuous values
- Let rank (x) be the ranks of x_{i} 's
- For $x=7,3,5, \operatorname{rank}(x)=3,1,2$
- Spearman's correlation coefficient is the Pearson's coefficient over the ranks:

$$
\rho=r(\operatorname{rank}(x), \operatorname{rank}(y)) \quad \frac{\operatorname{Cov}(\operatorname{rank}(X), \operatorname{rank}(Y))}{\sqrt{\operatorname{Var}(\operatorname{rank}(X)) \cdot \operatorname{Var}(\operatorname{rank}(Y))}}
$$

- Only if all ranks in $\operatorname{rank}(x)$ and $\operatorname{rank}(y)$ are distinct:

$$
\rho=1-\frac{6 \sum_{i=1}^{n}\left(\operatorname{rank}(x)_{i}-\operatorname{rank}(y)_{i}\right)^{2}}{n \cdot\left(n^{2}-1\right)}
$$

- Spearman's correlation assesses monotonic relationships (whether linear or not)
- Computational cost is $O(n \cdot \log n)$

Correlation coefficients: Kendall's τ

- Spearman's is a measure of rank correlation, i.e., degree of similarity between the sample ranks of two variables. We don't use it if e.g., Y is binary valued
- Kendall's is another such measure:
[support in $[-1,1]$]

$$
\tau_{x y}=\frac{2 \sum_{i<j} \operatorname{sgn}\left(x_{i}-x_{j}\right) \cdot \operatorname{sgn}\left(y_{i}-y_{j}\right)}{n \cdot(n-1)} \quad E\left[\operatorname{sgn}\left(X_{1}-X_{2}\right) \cdot \operatorname{sgn}\left(Y_{1}-Y_{2}\right)\right]
$$

Fraction of concordant pairs minus discordant pairs, i.e., probability of observing a difference between concordant and discordant pairs.

- Correction τ_{b} accounting for ties, i.e., $x_{i}=x_{j}$ or $y_{i}=y_{j} \quad$ [implemented by cor in R]
- Computational cost is $O\left(n^{2}\right)$

See R script

Correlation coefficients: Somers' D

- An asymmetric Kendall's:

$$
D=\frac{\tau_{x y}}{\tau_{y y}}=\frac{\sum_{i<j} \operatorname{sgn}\left(x_{i}-x_{j}\right) \cdot \operatorname{sgn}\left(y_{i}-y_{j}\right)}{\sum_{i<j} \operatorname{sgn}\left(y_{i}-y_{j}\right)^{2}}
$$

i.e., fraction of concordand pairs minus discordant pairs conditional to unequal values of y

- Example with probabilistic classifiers
- $x=$ probabilities of positive classification, i.e., predict_proba(...) [,1]
- y true class
- D is the Gini index of classifier performances
- related to AUC of ROC curve:

$$
D=2 \cdot A U C-1 \quad A U C=\frac{D}{2}+0.5=\frac{\tau_{x y}}{2 \cdot \tau_{y y}}+0.5
$$

See R script

