Statistical Methods for Data Science

Lesson 10 - Law of large numbers, and the central limit theorem

Salvatore Ruggieri
Department of Computer Science
University of Pisa
salvatore.ruggieri@unipi.it

Chebyshev's inequality

- Question: how much probability mass is near the expectation?

$$
\begin{aligned}
& \text { CHEBYSHEV'S INEQUALITY. For an arbitrary random variable } Y \\
& \text { and any } a>0 \text { : } \\
& \qquad \mathrm{P}(|Y-\mathrm{E}[Y]| \geq a) \leq \frac{1}{a^{2}} \operatorname{Var}(Y)
\end{aligned}
$$

- Proof. (continuous case) Let $\mu=E[Y]$:

$$
\begin{aligned}
& \operatorname{Var}(Y)=\int_{-\infty}^{\infty}(x-\mu)^{2} f(y) d y \geq \int_{|x-\mu| \geq a}(x-\mu)^{2} f(y) d y \\
\geq & \int_{|x-\mu| \geq a} a^{2} f(y) d y=a^{2} P(|x-\mu| \geq a)
\end{aligned}
$$

- For $k=2,3,4$, the RHS is $3 / 4,8 / 9,15 / 16$

Chebyshev's inequality

- " $\mu \pm \mathbf{a}$ few σ " rule: Most of the probability mass of a random variable is within a few standard deviations from its expectation!
- Let $\sigma^{2}=\operatorname{Var}(Y)$. For $a=k \sigma$:

$$
P(|Y-\mu|<k \sigma)=1-P(|Y-\mu| \geq k \sigma) \geq 1-\frac{1}{k^{2} \sigma^{2}} \operatorname{Var}(Y)=1-\frac{1}{k^{2}}
$$

- Chebyshev's inequality is sharp when nothing is known about X, but in general it is a large bound!

See R script

Averages vary less

- Guessing the weight of a cow

- See Francis Galton (inventor of standard deviation and much more)

Expectation and variance of an average

- Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent r . v. for which $E\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$

$$
\bar{X}_{n}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}
$$

Expectation and variance of an average. If \bar{X}_{n} is the average of n independent random variables with the same expectation μ and variance σ^{2}, then

$$
\mathrm{E}\left[\bar{X}_{n}\right]=\mu \quad \text { and } \quad \operatorname{Var}\left(\bar{X}_{n}\right)=\frac{\sigma^{2}}{n}
$$

- Notice that X_{1}, \ldots, X_{n} are not required to be identically distributed!

See R script

The (weak) law of large numbers

- Apply Chebyshev's inequality to \bar{X}_{n}

$$
P\left(\left|\bar{X}_{n}-\mu\right|>\epsilon\right) \leq \frac{1}{\epsilon^{2}} \operatorname{Var}\left(\bar{X}_{n}\right)=\frac{\sigma^{2}}{n \epsilon^{2}}
$$

- For $n \rightarrow \infty, \sigma^{2} /\left(n \epsilon^{2}\right) \rightarrow 0$

$$
\text { The law of Large numbers. If } \bar{X}_{n} \text { is the average of } n \text { independent }
$$ random variables with expectation μ and variance σ^{2}, then for any $\varepsilon>0$:

$$
\lim _{n \rightarrow \infty} \mathrm{P}\left(\left|\bar{X}_{n}-\mu\right|>\varepsilon\right)=0
$$

- \bar{X}_{n} converges to μ as $n \rightarrow \infty$!
- It holds also if σ^{2} is infinite (proof not included)
- Notice (again!) that X_{1}, \ldots, X_{n} are not required to be identically distributed!

Recovering probability of an event

- Let $C=(a, b]$, and want to know $p=P(X \in C)$
- Run n independent measurements
- Model the results as X_{1}, \ldots, X_{n} random variables
- Define the indicator variables, for $i=1, \ldots, n$:

$$
Y_{i}= \begin{cases}1 & \text { if } X_{i} \in C \\ 0 & \text { if } X_{i} \notin C\end{cases}
$$

- Y_{i} 's are independent
[Propagation of independence]
- $E\left[Y_{i}\right]=1 \cdot P\left(X_{i} \in C\right)+0 \cdot P\left(X_{i} \in C\right)=p$
- Defined $\bar{Y}_{n}=\frac{Y_{1}+\ldots+Y_{n}}{n}$, by the law of large numbers:

$$
\lim _{n \rightarrow \infty} P\left(\left|\bar{Y}_{n}-p\right|>\epsilon\right)=0
$$

- Frequency counting (e.g., in histograms) is a probability estimation method!

The central limit theorem

- Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent r. v. for which $E\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$

$$
\bar{X}_{n}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n} \quad E\left[\bar{X}_{n}\right]=\mu \quad \operatorname{Var}\left(\bar{X}_{n}\right)=\frac{\sigma^{2}}{n}
$$

- Can we derive the distribution of \bar{X}_{n} ?
- Assume $X_{i} \sim N\left(\mu, \sigma^{2}\right)$:
- For $Y_{1} \sim N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $Y_{2} \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)$ indepedent:
$\square Y_{1}+Y_{2} \sim N\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right) \quad$ [the converse is also true (Levy Cramer thm)]
\square and $\frac{Y_{1}+Y_{2}}{2} \sim N\left(\frac{\mu_{1}+\mu_{2}}{2}, \frac{\sigma_{1}^{2}+\sigma_{2}^{2}}{2^{2}}\right)$
- Hence:

$$
\bar{X}_{n} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right) \quad Z_{n}=\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}}=\frac{\bar{X}_{n}-E\left[\bar{X}_{n}\right]}{\sqrt{\frac{\operatorname{Var}\left(\bar{X}_{n}\right)}{n}}} \sim N(0,1)
$$

- OK, does it generalize to any distribution? Yes!

The central limit theorem

$$
\begin{aligned}
& \text { The Central Limit theorem. Let } X_{1}, X_{2}, \ldots \text { be any sequence } \\
& \text { of independent identically distributed random variables with finite } \\
& \text { positive variance. Let } \mu \text { be the expected value and } \sigma^{2} \text { the variance } \\
& \text { of each of the } X_{i} \text {. For } n \geq 1 \text {, let } Z_{n} \text { be defined by } \\
& \qquad Z_{n}=\sqrt{n} \frac{\bar{X}_{n}-\mu}{\sigma} \text {; } \\
& \text { then for any number } a \\
& \qquad \lim _{n \rightarrow \infty} F_{Z_{n}}(a)=\Phi(a), \\
& \text { where } \Phi \text { is the distribution function of the } N(0,1) \text { distribution. In } \\
& \text { words: the distribution function of } Z_{n} \text { converges to the distribution } \\
& \text { function } \Phi \text { of the standard normal distribution. }
\end{aligned}
$$

- Some generalizations get rid of the identically distributed assumption.
- Why is it so frequent to observe a normal distribution?
- Sometime it is the average/sum effects of other variables
- This justifies the common use of it to stand in for the effects of unobserved variables

See R script and seeing-theory.brown.edu

Applications: approximating probabilities

- Let $X_{1}, \ldots, X_{n} \sim \operatorname{Exp}(2)$, for $n=100$

$$
\mu=\sigma=1 / 2
$$

- Assume to observe realizations x_{1}, \ldots, x_{n} such that $\bar{x}_{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}=0.6$
- What is the probability $P\left(\bar{X}_{n} \geq 0.6\right)$ of observing such a value or a greater value?

Option A: Compute the distribution of \bar{X}_{n}

- $S_{n}=X_{1}+\ldots+X_{n} \sim \operatorname{Erl}(n, 2)$
- $\bar{X}_{n}=S_{n} / n$ hence by Change-of-units transformation

$$
F_{\bar{X}_{n}}(x)=F_{S_{n}}(n \cdot x) \quad \text { and } \quad f_{\bar{X}_{n}}(x)=n \cdot f_{S_{n}}(n \cdot x)
$$

- and then:

$$
P\left(\bar{X}_{n} \geq 0.6\right)=1-F_{\bar{X}_{n}}(0.6)=1-F_{S_{n}}(n \cdot 0.6)=1-\operatorname{pgamma}(60, \mathrm{n}, 2)=0.0279
$$

Applications: approximating probabilities

- Let $X_{1}, \ldots, X_{n} \sim \operatorname{Exp}(2)$, for $n=100$

$$
\mu=\sigma=1 / 2
$$

- Assume to observe realizations x_{1}, \ldots, x_{n} such that $\bar{x}_{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}=0.6$
- What is the probability $P\left(\bar{X}_{n} \geq 0.6\right)$ of observing such a value or a greater value?

Option B: Approximate them by using the CLT

- $Z_{n}=\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}} \sim N(0,1)$ implies $\bar{X}_{n}=\frac{\sigma}{\sqrt{n}} Z_{n}+\mu \sim N\left(\mu, \sigma^{2} / n\right) \quad$ for $n \rightarrow \infty$
- and then:

$$
P\left(\bar{X}_{n} \geq 0.6\right)=P\left(\frac{\sigma}{\sqrt{n}} Z_{n}+\mu \geq 0.6\right)=P\left(Z_{n} \geq \frac{0.6-\mu}{\sigma / \sqrt{n}}\right) \approx 1-\Phi\left(\frac{0.6-0.5}{0.5 / 10}\right)==0.0228
$$

- also, notice $X_{1}+\ldots+X_{n}=\sqrt{n} \sigma Z_{n}+n \mu \sim N\left(n \mu, n \sigma^{2}\right)$

See R script

How large should n be?

- How fast is the convergence of Z_{n} to $N(0,1)$?
- The approximation might be poor when:
- n is small
the myth of $n \geq 30$
- X_{i} is asymmetric, bimodal, or discrete
- the value to test (0.6 in our example) is far from μ

