Statistical Methods for Data Science

Lesson 06 - Expectation and variance. Computations with random variables.

Salvatore Ruggieri
Department of Computer Science
University of Pisa
salvatore.ruggieri@unipi.it

Expectation of a discrete random variable

- Buy lottery ticket every week, $p=1 / 10000$

$$
X \sim \operatorname{Geo}(p) \quad P(X=k)=(1-p)^{k-1} \cdot p \text { for } k=1,2, \ldots
$$

- What is the average number of weeks to wait (expected) before winning?

$$
E[X]=\sum_{k=1}^{\infty} k \cdot(1-p)^{k-1} \cdot p=\frac{1}{p}
$$

because $\sum_{k=1}^{\infty} k \cdot x^{k-1}=1 /(1-x)^{2}$
Definition. The expectation of a discrete random variable X taking the values a_{1}, a_{2}, \ldots and with probability mass function p is the number

$$
\mathrm{E}[X]=\sum_{i} a_{i} \mathrm{P}\left(X=a_{i}\right)=\sum_{i} a_{i} p\left(a_{i}\right) .
$$

- Expected value, mean value (weighted by probability of occurrence), center of gravity Look at seeing-theory.brown.edu

Expected value may be infinite!

- X with PMF $p\left(2^{k}\right)=2^{-k}$ for $k=1,2, \ldots$
- $p()$ is a PMF since $\sum_{k=1}^{\infty} 2^{-k}=1$

$$
\text { using } \sum_{k=0}^{\infty}=a^{k}=\frac{1}{1-a} \text { for }|a|<1
$$

- $E[X]=\sum_{k=1}^{\infty} 2^{k} \cdot 2^{-k}=\sum_{k=1}^{\infty} 1=\infty$
- Expectation of some discrete distributions
- $X \sim U(m, M) \quad E[X]=(m+M) / 2$
$\square \sum_{i=m}^{M} \frac{i}{M-m+1}=\ldots$
- $X \sim \operatorname{Ber}(p) \quad E[X]=p$
[The mean may not belong to the support!]
- $X \sim \operatorname{Bin}(n, p) \quad E[X]=n \cdot p$
\square Because ... we'll see later
- $X \sim \operatorname{NBin}(n, p) \quad E[X]=\frac{n \cdot p}{1-p}$
\square Because ... we'll see later
- $X \sim \operatorname{Poi}(\mu) \quad E[X]=\mu$
\square Because, when $n \rightarrow \infty: \operatorname{Bin}(n, \mu / n) \rightarrow \operatorname{Poi}(\mu)$

Expectation of a continuous random variable

Definition. The expectation of a continuous random variable X with probability density function f is the number

$$
\mathrm{E}[X]=\int_{-\infty}^{\infty} x f(x) \mathrm{d} x
$$

- Expectation of some continuous distributions
- $X \sim U(\alpha, \beta) \quad E[X]=(\alpha+\beta) / 2$
- $X \sim \operatorname{Exp}(\lambda) \quad E[X]=1 / \lambda$
\square Because $\int_{0}^{\infty} x \lambda e^{-\lambda x} d x=\left[-e^{-\lambda x}(x+1 / \lambda]_{0}^{\infty}=e^{0}(0+1 / \lambda)\right.$
- $X \sim N\left(\mu, \sigma^{2}\right) \quad E[X]=\mu$
\square Because: $\int_{-\infty}^{\infty} x \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} d x=\mu+\int_{-\infty}^{\infty}(x-\mu) \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} d x={ }_{z=\frac{x-\mu}{\sigma}}$

$$
=\mu+\sigma \int_{-\infty}^{\infty} z \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} z^{2}} d z=\mu
$$

Expected value may not exists!

- Cauchy distribution

$$
f(x)=\frac{1}{\pi\left(1+x^{2}\right)}
$$

- $X_{1}, X_{2} \sim N(0,1)$ i.i.d., $X=X_{1} / X_{2} \sim \operatorname{Cau}(0,1)$

$$
E[X]=\int_{-\infty}^{0} x f(x) d x+\int_{0}^{\infty} x f(x) d x
$$

- $\int_{-\infty}^{0} x f(x) d x=\left[\frac{1}{2 \pi} \log \left(1+x^{2}\right)\right]_{-\infty}^{0}=-\infty$
- $\int_{0}^{\infty} x f(x) d x=\left[\frac{1}{2 \pi} \log \left(1+x^{2}\right)\right]_{0}^{\infty}=\infty$

$$
E[X]=-\infty+\infty
$$

Mean value does not always makes sense in your data analytics project! See R script

$E[g(X)] \neq g(E[X])$

- Recall that velocity = space/time, and then time = space/velocity!
- Vector v of speed $(\mathrm{Km} / \mathrm{h})$ to reach school and their probabilities p using feet, bike, bus, train:

$$
\mathrm{v}=\mathrm{c}(5,10,20,30) \quad \mathrm{p}=\mathrm{c}(0.1,0.4,0.25,0.25)
$$

- Distance house-schools is 2 Km
- What is the average time to reach school?
- $2 /$ sum ($\mathrm{v} * \mathrm{p}$)
- sum(2/v*p)
- $X=$ velocity, $g(X)=2 / X$ time to reach school
- $E[g(X)] \neq g(E[X])$

The change of variable formula (or rule of the lazy statistician)

- $X \sim U(0,10)$, width of a square field, $E[X]=5$
- $g(X)=X^{2}$ is the area of the field, $E[g(X)]=$?
- $F_{g}(a)=P(g(X) \leq a)=P(X \leq \sqrt{a})=\sqrt{a} / 10$ for $0 \leq a \leq 100$
- Hence, $f_{g}(a)=d F_{g}(a) / d a=1 / 20 \sqrt{a}$
- $E[g(X)]=\frac{1}{20} \int_{0}^{100} \frac{x}{\sqrt{x}} d x=\frac{1}{20} \frac{2}{3}\left[x^{3 / 2}\right]_{0}^{100}=100 / 3$
- Alternatively, $E[g(X)]=\int_{0}^{10} x^{2} \frac{1}{10} d x=\frac{1}{10} \frac{1}{3}\left[x^{3}\right]_{0}^{10}=100 / 3$

ThE CHANGE-OF-VARIABLE FORMULA. Let X be a random variable, and let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a function.
If X is discrete, taking the values a_{1}, a_{2}, \ldots, then

$$
\mathrm{E}[g(X)]=\sum_{i} g\left(a_{i}\right) \mathrm{P}\left(X=a_{i}\right)
$$

If X is continuous, with probability density function f, then

$$
\mathrm{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f(x) \mathrm{d} x
$$

Change of units

Theorem (Change of units)

$$
E[r X+s]=r E[X]+s
$$

- Prove it!
- Corollary:

$$
E[X-E[X]]=E[X]-E[X]=0
$$

Computation with random variables

Theorem

For a discrete random variable X, the p.m.f. of $Y=g(X)$ is:

$$
P_{Y}(Y=y)=\sum_{g(x)=y} P_{X}(X=x)=\sum_{x \in g^{-1}(y)} P_{X}(X=x)
$$

- Proof. $\{Y=y\}=\{g(X)=y\}=\left\{x \in g^{-1}(u)\right\}$
- Corollary (the change-of-variable formula):

$$
E[g(X)]=\sum_{y} y P_{Y}(Y=y)=\sum_{y} y \sum_{g(x)=y} P_{X}(X=x)=\sum_{x} g(x) P_{X}(X=x)
$$

Example

- $X \sim U(1,200)$ number of tickets sold
- Capacity is 150
- $Y=\max \{X-150,0\}$ overbooked tickets

$$
P_{Y}(Y=y)=\left\{\begin{array}{lll}
150 / 200 & \text { if } y=0 & g^{-1}(0)=\{1, \ldots, 150\} \\
1 / 200 & \text { if } 1 \leq y \leq 50 & g^{-1}(y)=\{y+150\}
\end{array}\right.
$$

- Hence:

$$
E[Y]=0 \cdot \frac{150}{200}+\frac{1}{200} \cdot \sum_{y=1}^{50} y=6.375
$$

- or using the change-of-variable formula:

$$
E[Y]=\frac{1}{200} \cdot \sum_{x=1}^{200} \max \{X-150,0\}=\frac{1}{200} \cdot \sum_{x=151}^{200}(X-150)=6.375
$$

Computation with random variables

Theorem

For a continuous random variable X, the density functions of $Y=g(X)$ when $g()$ is increasing/decreasing are:

$$
F_{Y}(y)=F_{X}\left(g^{-1}(y)\right) \quad f_{Y}(y)=f_{X}\left(g^{-1}(y)\right)\left|\frac{d g^{-1}(y)}{d y}\right|
$$

- Proof. (for $g()$ increasing) Since $g()$ is invertible and $g(x) \leq y$ iff $x \leq g^{-1}(y)$:

$$
F_{Y}(y)=P_{Y}(g(X) \leq y)=P_{X}\left(X \leq g^{-1}(y)\right)=F_{X}\left(g^{-1}(y)\right)
$$

and then:

$$
f_{Y}(y)=\frac{d F_{Y}(y)}{d y}=\frac{d F_{X}\left(g^{-1}(y)\right)}{d y}=\frac{d F_{X}\left(g^{-1}(y)\right)}{d g^{-1}} \frac{d g^{-1}(y)}{d y}=f_{X}\left(g^{-1}(y)\right) \frac{d g^{-1}(y)}{d y}
$$

Show the case $g()$ decreasing!

Example

- $X \sim U(0,1)$ radius $\quad f_{X}(x)=1 \quad F_{X}(x)=x$ for $x \in[0,1]$
- $Y=g(X)=\pi \cdot X^{2}$

Support is $[0, \pi]$

- $g(x)=\pi x^{2}$ is increasing, and $g^{-1}(y)=\sqrt{\frac{y}{\pi}}$, and $\frac{d g^{-1}(y)}{d y}=\frac{1}{2 \sqrt{\pi y}}$

$$
F_{Y}(y)=F_{X}\left(g^{-1}(y)\right)=\sqrt{\frac{y}{\pi}} \quad f_{Y}(y)=f_{X}\left(g^{-1}(y)\right) \frac{d g^{-1}(y)}{d y}=\frac{1}{2 \sqrt{\pi y}}
$$

Do not lift distributions from a data column to a derived column in your data analytics project! See R script

- Notice that: $g(E[X])=\pi / 4 \leq E[g(X)]=\int_{0}^{1} g(x) f_{X}(x) d x=\int_{0}^{\pi} y f_{Y}(y) d y=\frac{\pi}{3}$

Jensen's inequality

Jensen's inequality. Let g be a convex function, and let X be a random variable. Then

$$
g(\mathrm{E}[X]) \leq \mathrm{E}[g(X)]
$$

- $f()$ is convex if $f\left(t x_{1}+(1-t) x_{2}\right) \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)$ for $t \in[0,1]$

- if $f^{\prime \prime}(x) \geq 0$ then $f()$ is convex, e.g., $g(x)=\pi x^{2}$ or $g(x)=1 / x$ for $x \geq 0$

Change of units

Change-of-units transformation. Let X be a continuous random variable with distribution function F_{X} and probability density function f_{X}. If we change units to $Y=r X+s$ for real numbers $r>0$ and s, then

$$
F_{Y}(y)=F_{X}\left(\frac{y-s}{r}\right) \quad \text { and } \quad f_{Y}(y)=\frac{1}{r} f_{X}\left(\frac{y-s}{r}\right)
$$

- For $X \sim N\left(\mu, \sigma^{2}\right)$, how is $Z=\frac{X}{\sigma}+\frac{-\mu}{\sigma}=\frac{X-\mu}{\sigma}$ distributed?
- $f_{Z}(z)=\sigma f_{X}(\sigma y+\mu)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} y^{2}}$
- Hence, $Z \sim N(0,1)$
- In particular, any probability for X can be expressed in terms of probability for Z :

$$
P(X \leq a)=P\left(Z \leq \frac{a-\mu}{\sigma}\right)=\Phi\left(\frac{a-\mu}{\sigma}\right)
$$

Variance

- Investment A. $P(X=450)=0.5 \quad P(X=550)=0.5 \quad E[X]=500$
- Investment B. $P(X=0)=0.5 \quad P(X=1000)=0.5 \quad E[X]=500$
- Spread around the mean is important!

Variance and standard deviations

The variance $\operatorname{Var}(X)$ of a random variable X is the number:

$$
\operatorname{Var}(X)=E\left[(X-E[X])^{2}\right]
$$

$\sigma_{X}=\sqrt{\operatorname{Var}(X)}$ is called the standard deviation of X.

- The standard deviation has the same dimension as $E[X]$ (and as X)
- Investment A. $\operatorname{Var}(X)=50^{2}$ and $\sigma_{X}=50$
- Investment B. $\operatorname{Var}(X)=500^{2}$ and $\sigma_{X}=500$

Variance

- It holds that:

$$
\operatorname{Var}[X]=E\left[X^{2}\right]-E[X]^{2}
$$

- $E\left[X^{2}\right]$ is called the second moment of X

$$
\int_{-\infty}^{\infty} x^{2} f(x) d x
$$

- Prove it!

$$
\begin{aligned}
\operatorname{Var}(X) & =E[(X-E[X])(X-E[X])] \\
& =E\left[X^{2}+E[X]^{2}-2 X E[X]\right] \\
& =E\left[X^{2}\right]+E[X]^{2}-E[2 X E[X]] \\
& =E\left[X^{2}\right]+E[X]^{2}-2 E[X] E[X]=E\left[X^{2}\right]-E[X]^{2}
\end{aligned}
$$

- Corollary:

$$
\operatorname{Var}[r X+s]=r^{2} \operatorname{Var}[X]
$$

- Prove it!
- Variance insensitive to shift s !

Variance

- Variance may not exists!
- If expectation does does exists!
- Also in cases when expectation exists
\square We'll see later
- Variance of some discrete distributions
- $X \sim U(m, M) \quad E[X]=\frac{(m+M)}{2} \quad \operatorname{Var}(X)=\frac{(M-m+1)^{2}-1}{12}$
\square use $\operatorname{Var}(X)=\operatorname{Var}(X-m)$, call $n=M-m+1$ and $\sum_{i=1}^{n-1} i^{2}=\frac{(n-1) n(2 n-1)}{6}$
- $X \sim \operatorname{Ber}(p) \quad E[X]=p \quad \operatorname{Var}(X)=p^{2}(1-p)+(1-p)^{2} p=p(1-p)$
- $X \sim \operatorname{Bin}(n, p) \quad E[X]=n \cdot p \quad \operatorname{Var}(X)=n p(1-p)$
\square Because ... we'll see later
- $X \sim \operatorname{Geo}(p) \quad E[X]=\frac{1}{p} \quad \operatorname{Var}(X)=\frac{1-p}{p^{2}}$
\square Hint: use $\operatorname{Var}(X)=E\left[X^{2}\right]-E[X]^{2}$ and $\sum_{k=1}^{\infty} k^{2} \cdot x^{k-1}=\frac{1+x}{(1-x)^{3}}$
- $X \sim N \operatorname{Nin}(n, p) \quad E[X]=\frac{n \cdot p}{1-p} \quad \operatorname{Var}(X)=n \frac{1-p}{p^{2}}$
\square Because... we'll see later
- $X \sim \operatorname{Poi}(\mu) \quad E[X]=\mu \quad \operatorname{Var}(X)=\mu$
\square Because, when $n \rightarrow \infty: \operatorname{Bin}(n, \mu / n) \rightarrow \operatorname{Poi}(\mu)$
Look at seeing-theory.brown.edu

Variance

- Variance of some continuous distributions
- $X \sim U(\alpha, \beta) \quad E[X]=(\alpha+\beta) / 2 \quad \operatorname{Var}(X)=(\beta-\alpha)^{2} / 12$
\square Prove it! Recall that $f(x)=1 /(\beta-\alpha)$
- $X \sim \operatorname{Exp}(\lambda) \quad E[X]=1 / \lambda \quad \operatorname{Var}(X)=1 / \lambda^{2}$
\square Prove it! Recall that $f(x)=\lambda e^{-\lambda x}$
- $X \sim N\left(\mu, \sigma^{2}\right) \quad E[X]=\mu \quad \operatorname{Var}(X)=\sigma^{2}$
\square Prove it! Hint: use $z=\frac{x-\mu}{\sigma}$ and integration by parts.

