Discrete random variables

Definition. Let \(\Omega \) be a sample space. A **discrete random variable** is a function \(X : \Omega \to \mathbb{R} \) that takes on a finite number of values \(a_1, a_2, \ldots, a_n \) or an infinite number of values \(a_1, a_2, \ldots \).

\[
p(a_i) > 0 \text{ for } i = 1, 2, \ldots \\
p(a) = 0 \text{ if } a \notin \{a_1, a_2, \ldots\} \\
\sum_i p(a_i) = 1
\]

Definition. The **probability mass function** \(p \) of a discrete random variable \(X \) is the function \(p : \mathbb{R} \to [0, 1] \), defined by

\[
p(a) = P(X = a) \quad \text{for } -\infty < a < \infty.
\]

- Support finite or countable \(\{a_1, \ldots, a_n, \ldots\} \)
 - \(p(a_i) > 0 \) for \(i = 1, 2, \ldots \)
 - \(p(a) = 0 \) if \(a \notin \{a_1, a_2, \ldots\} \)
 - \(\sum_i p(a_i) = 1 \)

- What happens when the support is uncountable? E.g., \([0, 1]\) or \(\mathbb{R}^+ \) or \(\mathbb{R} \)
 - \(p(a_i) \) must be 0 because \(|\mathbb{R}| = 2^{\aleph_0} > \aleph_0 = |\mathbb{N}| \)
 - hence, \(\sum_i p(a_i) = 0 \)
Continuous random variables

- We cannot assign a “mass” to a real number, but we can assign it to an interval!

\[F(a) = P(X \leq a) = \int_{-\infty}^{a} f(x) \, dx \] [Cumulative Distribution Function]
Density function

\[P(X = a) \leq P(a - \epsilon \leq X \leq a + \epsilon) = \int_{a-\epsilon}^{a+\epsilon} f(x) \, dx = F(a + \epsilon) - F(a - \epsilon) \]

- for \(\epsilon \to 0 \), \(P(a - \epsilon \leq X \leq a + \epsilon) \to 0 \), hence \(P(X = a) = 0 \)
- What is the meaning of the density function \(f(x) \)?
- \(f(a) \) is a (relative) measure of how likely is \(X \) will be near \(a \)
\(X \sim U(\alpha, \beta) \)

Definition. A continuous random variable has a uniform distribution on the interval \([\alpha, \beta]\) if its probability density function \(f \) is given by \(f(x) = 0 \) if \(x \) is not in \([\alpha, \beta]\) and

\[
f(x) = \frac{1}{\beta - \alpha} \quad \text{for} \quad \alpha \leq x \leq \beta.
\]

We denote this distribution by \(U(\alpha, \beta) \).

- \(F(x) = \int_{-\infty}^{x} f(x) \, dx = \frac{1}{\beta - \alpha} \int_{\alpha}^{x} 1 \, dx = \frac{x - \alpha}{\beta - \alpha} \quad \text{for} \quad \alpha \leq x \leq \beta \)

See R script
For $X \sim \text{Geo}(p)$, we have:

$F(x) = P(X \leq x) = 1 - (1 - p)^{\lfloor x \rfloor}$

extend to reals:

$F(X) = P(X \leq x) = 1 - (1 - p)^x = 1 - e^{x \cdot \log(1 - p)} = 1 - e^{-\lambda x}$

for $\lambda = \log\left(\frac{1}{1 - p}\right)$

$f(x) = \frac{dF}{dx}(x) = \lambda e^{-\lambda x}$

Definition. A continuous random variable has an exponential distribution with parameter λ if its probability density function f is given by $f(x) = 0$ if $x < 0$ and

$f(x) = \lambda e^{-\lambda x}$ for $x \geq 0$.

We denote this distribution by $\text{Exp}(\lambda)$.

λ is the rate of events, e.g.,

- $\lambda = \frac{1}{10}$ number of bus arrivals per minute, or $\frac{1}{\lambda} = 10$ minutes to wait for bus arrival
- $P(X > 1) = 1 - P(X \leq 1) = e^{-\lambda} = 0.9048$ probability of waiting more than 1 minute.

Exponential is memoryless: $P(X > s + t | X > s) = e^{-\lambda \cdot (s + t)}/e^{-\lambda \cdot s} = e^{-\lambda \cdot t} = P(X > t)$

See R script and seeing-theory.brown.edu
\(X \sim N(\mu, \sigma^2) \)

Definition. A continuous random variable has a normal distribution with parameters \(\mu \) and \(\sigma^2 > 0 \) if its probability density function \(f \) is given by

\[
f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2} \quad \text{for } -\infty < x < \infty.
\]

We denote this distribution by \(N(\mu, \sigma^2) \).

- Also called Gaussian distribution
- Standard Normal/Gaussian is \(N(0, 1) \)
 - \(f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \) sometimes written as \(\phi(x) \)
 - No closed form for \(F(a) = \Phi(a) = \int_{-\infty}^{a} \phi(x) \, dx \)
CCDF of $Z \sim N(0, 1)$

E.g., $P(Z > 1.04) = 0.1492$

See R script
Quantiles

Definition. Let X be a continuous random variable and let p be a number between 0 and 1. The pth quantile or 100pth percentile of the distribution of X is the smallest number q_p such that

$$F(q_p) = P(X \leq q_p) = p.$$

The median of a distribution is its 50th percentile.

- If $F()$ is strictly increasing, $q_p = F^{-1}(p)$
- E.g., for $\text{Exp}(\lambda)$, $F(a) = 1 - e^{-\lambda a}$, hence $F^{-1}(p) = \frac{1}{\lambda} \log \frac{1}{1-p}$

See R script
Simulation

• Not all problems can be solved with calculus!
• Complex interactions among random variables can be simulated
• Generated random values are called realizations
• Basic issue: how to generate realizations?
 ▶ in R: \texttt{rnorm(5)}, \texttt{rexp(2)}, \texttt{rbinom(\ldots)}, \ldots
• Ok, but how do they work?
• Assumption: we are only given \texttt{runif()}!
• Problem: derive all the other random generators
Simulation: discrete distributions

Bernoulli random variables

Suppose U has a $U(0, 1)$ distribution. To construct a $Ber(p)$ random variable for some $0 < p < 1$, we define

$$X = \begin{cases} 1 & \text{if } U < p, \\ 0 & \text{if } U \geq p \end{cases}$$

so that

$$P(X = 1) = P(U < p) = p,$$
$$P(X = 0) = P(U \geq p) = 1 - p.$$

This random variable X has a Bernoulli distribution with parameter p.

- For $X_1, \ldots, X_n \sim Ber(p)$ i.i.d., we have: $\sum_{i=1}^{n} X_i \sim Binom(n, p)$

See R script
Simulation: continuous distributions

- $F : \mathbb{R} \to [0, 1]$ and $F^{-1} : [0, 1] \to \mathbb{R}$
 - E.g., F strictly increasing
 - N.B., the textbook notation for F^{-1} is F^{inv}
- For $X \sim U(0, 1)$ and $0 \leq b \leq 1$
 $P(X \leq b) = b$
- then, for $b = F(x)$
 $P(X \leq F(x)) = F(x)$
- and then by inverting
 $P(F^{-1}(x) \leq x) = F(x)$
- In summary:
 $F^{-1}(X) \sim F$ for $X \sim U(0, 1)$

See R script
Common distributions

Relationships among common distributions. Solid lines represent transformations and special cases, dashed lines represent limits. Adapted from Leemis (1986).