Statistical Methods for Data Science

Lesson 01 - Introduction

Salvatore Ruggieri

Department of Computer Science
University of Pisa salvatore.ruggieri@unipi.it

Why Statistics

We need grounded means for reasoning about data science mechanisms.

What will I learn?

- Probability: properties of data generated according to a known randomness model
- Statistics: properties of a randomness model that could have generated given data
- Simulation and R

Sample spaces and events

- An experiment is a measurement of a random process
- The outcome of a measurement takes values in some set Ω, called the sample space. Examples:
- Tossing a coin: $\Omega=\{\mathrm{H}, \mathrm{T}\}$
- Month of birthdays $\Omega=\{$ Jan, \ldots, Dec $\}$
- Population of a city $\Omega=\mathbb{N}=\{0,1,2, \ldots$,
- Length of a street $\Omega=\mathbb{R}^{+}=(0, \infty)$.
- Tossing a coin twice: what is Ω ?

Look at seeing-theory.brown.edu

- An event is some subset of $A \subseteq \Omega$ of possible outcomes of an experiment.
- $L=\{$ Jan, March, May, July, August, October, December $\} \quad$ a long month with 31 days
- We say that an event A occurs if the outcome of the experiment lies in the set A.
- If the outcome is Jan then L occurs

Probability functions

A probability distribution is a mapping from events to real numbers that satisfies certain axioms. Intuition: how likely is an event to occur.

Definition. A probability function P on a finite sample space Ω assigns to each event A in Ω a number $\mathrm{P}(A)$ in $[0,1]$ such that
(i) $\mathrm{P}(\Omega)=1$, and
(ii) $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)$ if A and B are disjoint.

The number $\mathrm{P}(A)$ is called the probability that A occurs.

- Fact: $P\left(\left\{a_{1}, \ldots, a_{n}\right\}=P\left(\left\{a_{1}\right\}\right)+\ldots+P\left(\left\{a_{n}\right\}\right)\right.$
[Generalized additivity]
- Examples:
- $P(\{\mathrm{H}\})=P(\{\mathrm{~T}\})=1 / 2$
- $P(\mathrm{Jan})=31 / 365, P(\mathrm{Feb})=28 / 365, \ldots P(\mathrm{Dec})=31 / 365$
- $P(L)=7 / 12$ or $31 \cdot 7 / 365$?

Properties of probability functions

- Assigning probability is NOT an easy task.
- Frequentist interpretation: probability measures a "proportion of outcomes".
- Bayesian (or epistemological) interpretation: probability measures a "degree of belief".
- $P\left(A^{c}\right)=1-P(A)$
- $P(\emptyset)=0$
- $A \subseteq B \Rightarrow P(A) \leq P(B)$
- $P(A \cup B)=P(A)+P(B)-P(A \cap B) \quad$ [(Inclusion-exclusion principle]
- probability that at least one coin toss over two lands head?

Products of sample spaces

An experiment made of multiple sub-experiments

- Eg., $\Omega=\{\mathrm{H}, \mathrm{T}\} \times\{\mathrm{H}, \mathrm{T}\}=\{(H, H),(H, T),(T, H),(T, T)\}$
- $P((H, H))=1 / 4$

In general:

- $\Omega=\Omega_{1} \times \Omega_{2}=\left\{\left(\omega_{1}, \omega_{2}\right) \mid \omega_{1} \in \Omega_{1}, \omega_{2} \in \Omega_{2}\right\}$
- $P\left(\left(a_{1}, a_{2}\right)\right)=1 /\left|\Omega_{1}\right| \cdot 1 /\left|\Omega_{2}\right|$
[Uniform function over independent experiments]

The Monty Hall problem

https://math.andyou.com/tools/montyhallsimulator/montysim.htm (See also Exercise 2.14 of textbook [T])

Exercise at home: generalize to n doors where host opens $n-2$ doors with goats.

A (countably) infinite sample space

Definition. A probability function on an infinite (or finite) sample space Ω assigns to each event A in Ω a number $\mathrm{P}(A)$ in $[0,1]$ such that
(i) $\mathrm{P}(\Omega)=1$, and
(ii) $\mathrm{P}\left(A_{1} \cup A_{2} \cup A_{3} \cup \cdots\right)=\mathrm{P}\left(A_{1}\right)+\mathrm{P}\left(A_{2}\right)+\mathrm{P}\left(A_{3}\right)+\cdots$ if $A_{1}, A_{2}, A_{3}, \ldots$ are disjoint events.

- Example
- Experiment: we toss a coin repeatedly until H turns up.
- Outcome: the number of tosses needed.
- $\Omega=\{1,2, \ldots\}=\mathbb{N}^{+}$
- Suppose: $P(H)=p$. Then: $P(n)=(1-p)^{n-1} p$
- Is it a probability function? $P(\Omega)=\ldots$

Conditional probability

- Long months and months with ' r '
- $L=\{$ Jan, Mar, May, July, Aug, Oct, Dec $\}$
- $R=\{$ Jan, Feb, Mar, Apr, Sep, Oct, Nov, Dec $\}$
a long month with 31 days
- $P(L)=7 / 12 \quad P(R)=8 / 12$
- Anna is born in a long month. What is the probability she is born in a month with ' r '?

$$
\frac{P(L \cap R)}{P(L)}=\frac{P(\{\text { Jan, Mar, Oct, Dec }\})}{P(L)}=\frac{4 / 12}{7 / 12}=\frac{4}{7}
$$

- Intuition: probability of an event in the restricted sample space $\Omega \cap L$

Another example at seeing-theory.brown.edu

Conditional probability

Definition. The conditional probability of A given C is given by:

$$
\mathrm{P}(A \mid C)=\frac{\mathrm{P}(A \cap C)}{\mathrm{P}(C)}
$$

provided $\mathrm{P}(C)>0$.
Properties:

- $P(A \mid C) \neq P(C \mid A)$, in general
- $P(\Omega \mid C)=1$
- if $A \cap B=\emptyset$ then $P(A \cup B \mid C)=P(A \mid C)+P(B \mid C)$

The multiplication rule. For any events A and C :

$$
\mathrm{P}(A \cap C)=\mathrm{P}(A \mid C) \cdot \mathrm{P}(C)
$$

More generally, the Chain Rule:

$$
P\left(A_{1} \cap A_{2} \cap A_{3} \ldots \cap A_{n}\right)=P\left(A_{1}\right) \cdot P\left(A_{2} \mid A_{1}\right) \cdot P\left(A_{3} \mid A_{2}, A_{1}\right) \cdot \ldots P\left(A_{n} \mid A_{n-1}, \ldots, A_{1}\right)_{10 / 19}
$$

Example: no coincident birthdays

- $B_{n}=\{n$ different birthdays $\}$
- For $n=1, P\left(B_{1}\right)=1$
- For $n>1$,

$$
P\left(B_{n}\right)=P\left(B_{n-1}\right) \cdot P\left(\{\text { the } n \text {-th person's birthday differs from the other } n-1\} \mid B_{n-1}\right)
$$

$$
=P\left(B_{n-1}\right) \cdot\left(1-\frac{n-1}{365}\right)=\ldots=\prod_{i=1}^{n-1}\left(1-\frac{i}{365}\right)
$$

Example: case-based reasoning

Factory 1's light bulbs work for over 5000 hours in 99% of cases.
Factory 2's bulbs work for over 5000 hours in 95% of cases.
Factory 1 supplies 60% of the total bulbs on the market and Factory 2 supplies 40% of it. What is the chance that a purchased bulb will work for longer than 5000 hours?

- $A=\{$ bulbs working for longer than 5000 hours $\}$
- $C=\{$ bulbs made by Factory 1$\}$, hence $C^{c}=\{$ bulbs made by Factory 2$\}$
- Since $A=(A \cap C) \cup\left(A \cap C^{c}\right)$ with $(A \cap C)$ and $\left(A \cap C^{c}\right)$ disjoint:

$$
P(A)=P(A \cap C)+P\left(A \cap C^{c}\right)
$$

- and then by the multiplication rule:

$$
P(A)=P(A \mid C) \cdot P(C)+P\left(A \mid C^{c}\right) \cdot P\left(C^{c}\right)
$$

Answer: $P(A)=0.99 \cdot 0.6+0.95 \cdot 0.4=0.974$

The law of total probability

The law of total probability. Suppose $C_{1}, C_{2}, \ldots, C_{m}$ are disjoint events such that $C_{1} \cup C_{2} \cup \cdots \cup C_{m}=\Omega$. The probability of an arbitrary event A can be expressed as:

$$
\mathrm{P}(A)=\mathrm{P}\left(A \mid C_{1}\right) \mathrm{P}\left(C_{1}\right)+\mathrm{P}\left(A \mid C_{2}\right) \mathrm{P}\left(C_{2}\right)+\cdots+\mathrm{P}\left(A \mid C_{m}\right) \mathrm{P}\left(C_{m}\right) .
$$

- Intuition: case-based reasoning

Fig. 3.2. The law of total probability (illustration for $m=5$).

Testing for Covid-19

A new test for Covid-19 (or Mad-Cow desease, or drug use) has been developed.

- $+=\{$ people tested positive $\} \quad-=\{$ people tested negative $\}=+^{c}$
- $C=\{$ people with Covid-19 $\} \quad C^{c}=\{$ people without Covid-19 $\}$

In lab experiments, people with and without Covid-19 tested

- $P(+\mid C)=0.99$
[Sensitivity/Recall/True Positive Rate]
- $P\left(-\mid C^{c}\right)=0.99$
[Specificity/True Negative Rate]
What is the probability I really have Covid-19 given that I tested positive? [Precision]

$$
\begin{gathered}
P(C \mid+)=\frac{P(C \cap+)}{P(+)}=\frac{P(+\mid C) \cdot P(C)}{P(+)}=\frac{P(+\mid C) \cdot P(C)}{P(+\mid C) \cdot P(C)+P\left(+\mid C^{c}\right) \cdot P\left(C^{c}\right)} \\
P(C \mid+)=\frac{0.99 \cdot P(C)}{0.99 \cdot P(C)+0.01 \cdot(1-P(C))}
\end{gathered}
$$

Testing for Covid-19

$P(C)$, the probability of having Covid-19, is unknown. Let's plot $P(C \mid+)$ over $P(C)$:

- For $P(C)=0.02, P(C \mid+)=.67$
- For $P(C)=0.06, P(C \mid+)=.86$
- For $P(C)=0.10, P(C \mid+)=.92$

Bayes' Rule

Bayes' RULE. Suppose the events $C_{1}, C_{2}, \ldots, C_{m}$ are disjoint and

 $C_{1} \cup C_{2} \cup \cdots \cup C_{m}=\Omega$. The conditional probability of C_{i}, given an arbitrary event A, can be expressed as:$$
\mathrm{P}\left(C_{i} \mid A\right)=\frac{\mathrm{P}\left(A \mid C_{i}\right) \cdot \mathrm{P}\left(C_{i}\right)}{\mathrm{P}\left(A \mid C_{1}\right) \mathrm{P}\left(C_{1}\right)+\mathrm{P}\left(A \mid C_{2}\right) \mathrm{P}\left(C_{2}\right)+\cdots+\mathrm{P}\left(A \mid C_{m}\right) \mathrm{P}\left(C_{m}\right)} .
$$

- It follows from $P\left(C_{i} \mid A\right)=\frac{P\left(A \mid C_{i}\right) \cdot P\left(C_{i}\right)}{P(A)}$ and the law of total probability
- Useful when:
- $P\left(C_{i} \mid A\right)$ not easy to calculate
- while $P\left(A \mid C_{j}\right)$ and $P\left(C_{j}\right)$ are known for $j=1, \ldots, m$
- E.g., in classification problems (see Bayesian classifiers from Data Mining)
- $P\left(C_{i}\right)$ is called the prior probability
- $P\left(C_{i} \mid A\right)$ is called the posterior probability (after seeing event A)

Independence of events

Intuition: whether one event provides any information about another.
Definition. An event A is called independent of B if

$$
\mathrm{P}(A \mid B)=\mathrm{P}(A)
$$

- For $P(C)=0.10, P(C \mid+)=.92$ - knowing test result changes prob. of being infected!
- Tossing 2 coins:
- A_{1} is " H on toss 1 " and A_{2} is " H on toss 2 "
- $P\left(A_{1}\right)=P\left(A_{2}\right)=1 / 2$
- $P\left(A_{2} \mid A_{1}\right)=P\left(A_{2} \cap A_{1}\right) / P\left(A_{1}\right)=1 / 4 / 1 / 2=1 / 2=P\left(A_{1}\right)$
- Properties:
- A independent of B iff $P(A \cap B)=P(A) \cdot P(B)$
- A independent of B iff B independent of A

Independence of two or more events

INDEPENDENCE OF TWO OR MORE EVENTS. Events A_{1}, A_{2}, \ldots, A_{m} are called independent if

$$
\mathrm{P}\left(A_{1} \cap A_{2} \cap \cdots \cap A_{m}\right)=\mathrm{P}\left(A_{1}\right) \mathrm{P}\left(A_{2}\right) \cdots \mathrm{P}\left(A_{m}\right)
$$

and this statement also holds when any number of the events A_{1},
\ldots, A_{m} are replaced by their complements throughout the formula.

- It is stronger than pairwise independence

$$
P\left(A_{i} \cap A_{j}\right)=P\left(A_{i}\right) \cdot P\left(A_{j}\right) \text { for } i \neq j \in\{1, \ldots, m\}
$$

Independence of two or more events

Alternative definition

Events $A_{1}, A_{2}, \ldots, A_{m}$ are called independent if

$$
P\left(\bigcap_{i \in J} A_{i}\right)=\prod_{i \in J} P\left(A_{i}\right)
$$

for every $J \subseteq\{1, \ldots, m\}$

- Exercise at home: show the two definitions are equivalent
- Example: what is the probability of at least one head in the first 10 tosses of a coin? $A_{i}=\{$ head in i-th toss $\}$

$$
P\left(\bigcup_{i=1}^{10} A_{i}\right)=1-P\left(\bigcap_{i=1}^{10} A_{i}^{c}\right)=1-\prod_{i=1}^{10} P\left(A_{i}^{c}\right)=1-\prod_{i=1}^{10}\left(1-P\left(A_{i}\right)\right)
$$

