Statistical Methods for Data Science

Lesson 01 - Introduction

Salvatore Ruggieri

Department of Computer Science University of Pisa salvatore.ruggieri@unipi.it

Why Statistics

We need grounded means for reasoning about data science mechanisms.

What will I learn?

- Probability: properties of data generated according to a known randomness model
- Statistics: properties of a randomness model that could have generated given data
- Simulation and R

Sample spaces and events

- An **experiment** is a measurement of a random process
- The **outcome** of a measurement takes values in some set Ω , called the **sample space**.

Examples:

Tossing a coin twice: what is Ω?

Look at seeing-theory.brown.edu

- An **event** is some subset of $A \subseteq \Omega$ of possible outcomes of an experiment.
 - $ightharpoonup L = \{ Jan, March, May, July, August, October, December \}$ a long month with 31 days
- We say that an event A **occurs** if the outcome of the experiment lies in the set A.
 - ▶ If the outcome is Jan then L occurs

Probability functions

A **probability distribution** is a mapping from events to **real numbers** that satisfies certain axioms. *Intuition: how likely is an event to occur.*

DEFINITION. A probability function P on a finite sample space Ω assigns to each event A in Ω a number P(A) in [0,1] such that (i) $P(\Omega) = 1$, and (ii) $P(A \cup B) = P(A) + P(B)$ if A and B are disjoint. The number P(A) is called the probability that A occurs.

• Fact: $P(\{a_1,\ldots,a_n\} = P(\{a_1\}) + \ldots + P(\{a_n\})$

[Generalized additivity]

- Examples:
 - ► $P(\{H\}) = P(\{T\}) = \frac{1}{2}$
 - $P(Jan) = 31/365, P(Feb) = 28/365, \dots P(Dec) = 31/365$
 - $P(L) = \frac{7}{12}$ or $\frac{31.7}{365}$?

Properties of probability functions

- Assigning probability is NOT an easy task.
 - ► Frequentist interpretation: probability measures a "proportion of outcomes".
 - ▶ Bayesian (or epistemological) interpretation: probability measures a "degree of belief".

- $P(A^c) = 1 P(A)$
- $P(\emptyset) = 0$
- $A \subseteq B \Rightarrow P(A) \leq P(B)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$ [(Inclusion-exclusion principle]
- probability that at least one coin toss over two lands head?

Products of sample spaces

An experiment made of multiple sub-experiments

- Eg., $\Omega = \{ H, T \} \times \{ H, T \} = \{ (H, H), (H, T), (T, H), (T, T) \}$
- P((H, H)) = 1/4

In general:

- $\Omega = \Omega_1 \times \Omega_2 = \{(\omega_1, \omega_2) \mid \omega_1 \in \Omega_1, \omega_2 \in \Omega_2\}$
- $P((a_1, a_2)) = 1/|\Omega_1| \cdot 1/|\Omega_2|$ [Uniform function over independent experiments]

The Monty Hall problem

https://math.andyou.com/tools/montyhallsimulator/montysim.htm (See also Exercise 2.14 of textbook [T])

Exercise at home: generalize to n doors where host opens n-2 doors with goats.

A (countably) infinite sample space

DEFINITION. A probability function on an infinite (or finite) sample space Ω assigns to each event A in Ω a number P(A) in [0,1] such that

- (i) $P(\Omega) = 1$, and
- (ii) $P(A_1 \cup A_2 \cup A_3 \cup \cdots) = P(A_1) + P(A_2) + P(A_3) + \cdots$ if A_1, A_2, A_3, \ldots are disjoint events.

Example

- ► Experiment: we toss a coin repeatedly until H turns up.
- ▶ Outcome: the number of tosses needed.
- $\Omega = \{1, 2, \ldots\} = \mathbb{N}^+$
- ► Suppose: P(H) = p. Then: $P(n) = (1 p)^{n-1}p$
- ▶ Is it a probability function? $P(\Omega) = ...$

Conditional probability

- Long months and months with 'r'
 - ► $L = \{$ Jan, Mar, May, July, Aug, Oct, Dec $\}$ a long month with 31 days
 - $ightharpoonup R = \{ \text{ Jan, Feb, Mar, Apr, Sep, Oct, Nov, Dec } \}$
 - ► $P(L) = \frac{7}{12}$ $P(R) = \frac{8}{12}$
- Anna is born in a long month. What is the probability she is born in a month with 'r'?

$$\frac{P(L \cap R)}{P(L)} = \frac{P(\{\text{Jan, Mar, Oct, Dec}\})}{P(L)} = \frac{4/12}{7/12} = \frac{4}{7}$$

• **Intuition:** probability of an event in the restricted sample space $\Omega \cap L$

Another example at seeing-theory.brown.edu

a month with 'r'

Conditional probability

DEFINITION. The *conditional probability* of A given C is given by:

$$P(A \mid C) = \frac{P(A \cap C)}{P(C)},$$

provided P(C) > 0.

Properties:

- $P(A|C) \neq P(C|A)$, in general
- $P(\Omega|C)=1$
- if $A \cap B = \emptyset$ then $P(A \cup B|C) = P(A|C) + P(B|C)$

The multiplication rule. For any events A and C:

$$P(A \cap C) = P(A \mid C) \cdot P(C)$$
.

More generally, the Chain Rule:

$$P(A_1 \cap A_2 \cap A_3 \dots \cap A_n) = P(A_1) \cdot P(A_2|A_1) \cdot P(A_3|A_2, A_1) \cdot \dots \cdot P(A_n|A_{n-1}, \dots, A_1)$$
 10/19

Example: no coincident birthdays

- $B_n = \{n \text{ different birthdays}\}$
- For n = 1, $P(B_1) = 1$
- For n > 1,

$$P(B_n) = P(B_{n-1}) \cdot P(\{\text{the } n\text{-th person's birthday differs from the other } n-1\} | B_{n-1})$$

$$= P(B_{n-1}) \cdot (1 - \frac{n-1}{365}) = \ldots = \prod_{i=1}^{n-1} (1 - \frac{i}{365})$$

Example: case-based reasoning

Factory 1's light bulbs work for over 5000 hours in 99% of cases.

Factory 2's bulbs work for over 5000 hours in 95% of cases.

Factory 1 supplies 60% of the total bulbs on the market and Factory 2 supplies 40% of it.

What is the chance that a purchased bulb will work for longer than 5000 hours?

- A = {bulbs working for longer than 5000 hours}
- $C = \{ \text{bulbs made by Factory 1} \}$, hence $C^c = \{ \text{bulbs made by Factory 2} \}$
- Since $A = (A \cap C) \cup (A \cap C^c)$ with $(A \cap C)$ and $(A \cap C^c)$ disjoint:

$$P(A) = P(A \cap C) + P(A \cap C^{c})$$

and then by the multiplication rule:

$$P(A) = P(A|C) \cdot P(C) + P(A|C^{c}) \cdot P(C^{c})$$

Answer: $P(A) = 0.99 \cdot 0.6 + 0.95 \cdot 0.4 = 0.974$

The law of total probability

THE LAW OF TOTAL PROBABILITY. Suppose C_1, C_2, \ldots, C_m are disjoint events such that $C_1 \cup C_2 \cup \cdots \cup C_m = \Omega$. The probability of an arbitrary event A can be expressed as:

$$P(A) = P(A | C_1)P(C_1) + P(A | C_2)P(C_2) + \cdots + P(A | C_m)P(C_m).$$

• Intuition: case-based reasoning

Fig. 3.2. The law of total probability (illustration for m = 5).

Testing for Covid-19

A new test for Covid-19 (or Mad-Cow desease, or drug use) has been developed.

- $+ = \{ \text{ people tested positive } \} = \{ \text{ people tested negative } \} = +^c$
- $C = \{ \text{ people with Covid-19} \}$ $C^c = \{ \text{ people without Covid-19} \}$

In lab experiments, people with and without Covid-19 tested

•
$$P(+|C) = 0.99$$
 [Sensitivity/Recall/True Positive Rate]

•
$$P(-|C^c) = 0.99$$
 [Specificity/True Negative Rate]

What is the probability I really have Covid-19 given that I tested positive? [Precision]

$$P(C|+) = \frac{P(C \cap +)}{P(+)} = \frac{P(+|C) \cdot P(C)}{P(+)} = \frac{P(+|C) \cdot P(C)}{P(+|C) \cdot P(C) + P(+|C^c) \cdot P(C^c)}$$

$$P(C|+) = \frac{0.99 \cdot P(C)}{0.99 \cdot P(C) + 0.01 \cdot (1 - P(C))}$$

Testing for Covid-19

P(C), the probability of having Covid-19, **is unknown**. Let's plot P(C|+) over P(C):

- For P(C) = 0.02, P(C|+) = .67
- For P(C) = 0.06, P(C|+) = .86
- For P(C) = 0.10, P(C|+) = .92

Bayes' Rule

BAYES' RULE. Suppose the events C_1, C_2, \ldots, C_m are disjoint and $C_1 \cup C_2 \cup \cdots \cup C_m = \Omega$. The conditional probability of C_i , given an arbitrary event A, can be expressed as:

$$P(C_i | A) = \frac{P(A | C_i) \cdot P(C_i)}{P(A | C_1)P(C_1) + P(A | C_2)P(C_2) + \dots + P(A | C_m)P(C_m)}.$$

- It follows from $P(C_i|A) = \frac{P(A|C_i) \cdot P(C_i)}{P(A)}$ and the law of total probability
- Useful when:
 - ▶ $P(C_i|A)$ not easy to calculate
 - ▶ while $P(A|C_j)$ and $P(C_j)$ are known for j = 1, ..., m
 - ► E.g., in classification problems (see Bayesian classifiers from Data Mining)
- $P(C_i)$ is called the *prior* probability
- $P(C_i|A)$ is called the *posterior* probability (after seeing event A)

Independence of events

Intuition: whether one event provides any information about another.

Definition. An event
$$A$$
 is called $\underbrace{independent}_{}$ of B if
$$\mathrm{P}(A\,|\,B) = \mathrm{P}(A)\,.$$

- For P(C) = 0.10, P(C|+) = .92 knowing test result changes prob. of being infected!
- Tossing 2 coins:
 - \blacktriangleright A_1 is "H on toss 1" and A_2 is "H on toss 2"
 - $P(A_1) = P(A_2) = 1/2$
 - $P(A_2|A_1) = P(A_2 \cap A_1)/P(A_1) = \frac{1}{4}/\frac{1}{2} = \frac{1}{2} = P(A_1)$
- Properties:
 - ▶ A independent of B iff $P(A \cap B) = P(A) \cdot P(B)$
 - A independent of B iff B independent of A

[Symmetry]

Independence of two or more events

INDEPENDENCE OF TWO OR MORE EVENTS. Events A_1, A_2, \ldots, A_m are called independent if

$$P(A_1 \cap A_2 \cap \cdots \cap A_m) = P(A_1) P(A_2) \cdots P(A_m)$$

and this statement also holds when any number of the events A_1 , ..., A_m are replaced by their complements throughout the formula.

• It is stronger than pairwise independence

$$P(A_i \cap A_j) = P(A_i) \cdot P(A_j)$$
 for $i \neq j \in \{1, \dots, m\}$

Independence of two or more events

Alternative definition

Events A_1, A_2, \ldots, A_m are called independent if

$$P(\bigcap_{i\in J}A_i)=\prod_{i\in J}P(A_i)$$

for every $J \subseteq \{1, \ldots, m\}$

- Exercise at home: show the two definitions are equivalent
- Example: what is the probability of at least one head in the first 10 tosses of a coin? $A_i = \{\text{head in } i\text{-th toss}\}$

$$P(\bigcup_{i=1}^{10} A_i) = 1 - P(\bigcap_{i=1}^{10} A_i^c) = 1 - \prod_{i=1}^{10} P(A_i^c) = 1 - \prod_{i=1}^{10} (1 - P(A_i))$$