Statistical Methods for Data Science
Lesson 01 - Introduction

Salvatore Ruggieri

Department of Computer Science
University of Pisa
salvatore.ruggieri@unipi.it
We need grounded means for reasoning about data science mechanisms.

What will I learn?

- Probability: properties of data generated according to a known randomness model
- Statistics: properties of a randomness model that could have generated given data
- Simulation and R
Sample spaces and events

- An **experiment** is a measurement of a random process.
- The **outcome** of a measurement takes values in some set Ω, called the **sample space**.

Examples:
- Tossing a coin: $\Omega = \{H, T\}$
 [Finite]
- Month of birthdays $\Omega = \{\text{Jan}, \ldots, \text{Dec}\}$
 [Finite]
- Population of a city $\Omega = \mathbb{N} = \{0, 1, 2, \ldots, \}$
 [Countably infinite]
- Length of a street $\Omega = \mathbb{R}^+ = (0, \infty)$.
 [Uncountably infinite]
- Tossing a coin twice: what is Ω?

Look at seeing-theory.brown.edu

- An **event** is some subset of $A \subseteq \Omega$ of possible outcomes of an experiment.
 - $L = \{\text{Jan, March, May, July, August, October, December}\}$
 a long month with 31 days
- We say that an event A **occurs** if the outcome of the experiment lies in the set A.
 - If the outcome is Jan then L occurs.
A probability function is a mapping from events to real numbers that satisfies certain axioms. **Intuition: how likely is an event to occur.**

Definition. A probability function P on a finite sample space Ω assigns to each event A in Ω a number $P(A)$ in $[0,1]$ such that

1. $P(\Omega) = 1$, and
2. $P(A \cup B) = P(A) + P(B)$ if A and B are disjoint.

The number $P(A)$ is called the probability that A occurs.

- **Fact:** $P(\{a_1, \ldots, a_n\}) = P(\{a_1\}) + \ldots + P(\{a_n\})$

- **Examples:**
 - $P(\{H\}) = P(\{T\}) = \frac{1}{2}$
 - $P(\text{Jan}) = \frac{31}{365}, P(\text{Feb}) = \frac{28}{365}, \ldots P(\text{Dec}) = \frac{31}{365}$
 - $P(L) = \frac{7}{12}$ or $\frac{31 \cdot 7}{365}$?
Properties of probability functions

• Assigning probability is **NOT** an easy task.
 ▶ **Frequentist** interpretation: probability measures a “proportion of outcomes”.
 ▶ **Bayesian** (or epistemological) interpretation: probability measures a “degree of belief”.

• $P(A^C) = 1 - P(A)$
• $P(\emptyset) = 0$
• $A \subseteq B \Rightarrow P(A) \leq P(B)$
• $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ \[((\text{Inclusion-exclusion principle})\]
• probability that at least one coin toss over two lands head?

5 / 19
An experiment made of multiple sub-experiments

- Eg., \(\Omega = \{ \text{H, T} \} \times \{ \text{H, T} \} = \{(\text{H, H}), (\text{H, T}), (\text{T, H}), (\text{T, T})\} \)
- \(P((\text{H, H})) = \frac{1}{4} \)

In general:

- \(\Omega = \Omega_1 \times \Omega_2 = \{ (\omega_1, \omega_2) \mid \omega_1 \in \Omega_1, \omega_2 \in \Omega_2 \} \)
- \(P((a_1, a_2)) = \frac{1}{|\Omega_1|} \cdot \frac{1}{|\Omega_2|} \) \quad [\text{Uniform function over independent experiments}] \)
The Monty Hall problem

https://math.andyou.com/tools/montyhallsimulator/montysim.htm
(See also Exercise 2.14 of textbook \([T]\))

Exercise at home: generalize to \(n\) doors where host opens \(n - 2\) doors with goats.
A (countably) infinite sample space

Example

- **Experiment:** we toss a coin repeatedly until H turns up.
- **Outcome:** the number of tosses needed.
- **\(\Omega = \{1, 2, \ldots\} = \mathbb{N}^+ \)**
- **Suppose:** \(P(H) = p \). Then: \(P(n) = (1 - p)^{n-1}p \)
- **Is it a probability function?** \(P(\Omega) = \ldots \)

Definition. A *probability function* on an infinite (or finite) sample space \(\Omega \) assigns to each event \(A \) in \(\Omega \) a number \(P(A) \) in \([0, 1]\) such that

1. \(P(\Omega) = 1 \), and
2. \(P(A_1 \cup A_2 \cup A_3 \cup \cdots) = P(A_1) + P(A_2) + P(A_3) + \cdots \) if \(A_1, A_2, A_3, \ldots \) are disjoint events.
Conditional probability

• Long months and months with ‘r’
 ▶ $L = \{\text{Jan, Mar, May, July, Aug, Oct, Dec}\}$, a long month with 31 days
 ▶ $R = \{\text{Jan, Feb, Mar, Apr, Sep, Oct, Nov, Dec}\}$, a month with ‘r’
 ▶ $P(L) = \frac{7}{12}$, $P(R) = \frac{8}{12}$

• Anna is born in a long month. What is the probability she is born in a month with ‘r’?

 \[
 \frac{P(L \cap R)}{P(L)} = \frac{P(\{\text{Jan, Mar, Oct, Dec}\})}{P(L)} = \frac{\frac{4}{12}}{\frac{7}{12}} = \frac{4}{7}
 \]

• **Intuition:** probability of an event in the restricted sample space $\Omega \cap L$

 Another example at seeing-theory.brown.edu
Conditional probability

Definition. The *conditional probability* of A given C is given by:

$$P(A \mid C) = \frac{P(A \cap C)}{P(C)},$$

provided $P(C) > 0$.

Properties:

- $P(A \mid C) \neq P(C \mid A)$, in general
- $P(\Omega \mid C) = 1$
- if $A \cap B = \emptyset$ then $P(A \cup B \mid C) = P(A \mid C) + P(B \mid C)$

The Multiplication Rule: For any events A and C:

$$P(A \cap C) = P(A \mid C) \cdot P(C).$$

More generally, the **Chain Rule:**

$$P(A_1 \cap A_2 \cap A_3 \ldots \cap A_n) = P(A_1) \cdot P(A_2 \mid A_1) \cdot P(A_3 \mid A_2, A_1) \cdot \ldots \cdot P(A_n \mid A_{n-1}, \ldots, A_1)$$
Example: no coincident birthdays

- $B_n = \{n \text{ different birthdays}\}$
- For $n = 1$, $P(B_1) = 1$
- For $n > 1$,
 \[
P(B_n) = P(B_{n-1}) \cdot P(\{\text{the } n\text{-th person’s birthday differs from the other } n-1\}\mid B_{n-1})
 \]
 \[
 = P(B_{n-1}) \cdot \left(1 - \frac{n-1}{365}\right) = \ldots = \prod_{i=1}^{n-1} \left(1 - \frac{i}{365}\right)
 \]
Example: case-based reasoning

Factory 1’s light bulbs work for over 5000 hours in 99% of cases. Factory 2’s bulbs work for over 5000 hours in 95% of cases. Factory 1 supplies 60% of the total bulbs on the market and Factory 2 supplies 40% of it. What is the chance that a purchased bulb will work for longer than 5000 hours?

- \(A = \{ \text{bulbs working for longer than 5000 hours} \} \)
- \(C = \{ \text{bulbs made by Factory 1} \} \), hence \(C^c = \{ \text{bulbs made by Factory 2} \} \)
- Since \(A = (A \cap C) \cup (A \cap C^c) \) with \(A \cap C \) and \(A \cap C^c \) disjoint:

\[
P(A) = P(A \cap C) + P(A \cap C^c)
\]

- and then by the multiplication rule:

\[
P(A) = P(A|C) \cdot P(C) + P(A|C^c) \cdot P(C^c)
\]

Answer: \(P(A) = 0.99 \cdot 0.6 + 0.95 \cdot 0.4 = 0.974 \)
The law of total probability

The Law of Total Probability. Suppose C_1, C_2, \ldots, C_m are disjoint events such that $C_1 \cup C_2 \cup \cdots \cup C_m = \Omega$. The probability of an arbitrary event A can be expressed as:

$$P(A) = P(A \mid C_1)P(C_1) + P(A \mid C_2)P(C_2) + \cdots + P(A \mid C_m)P(C_m).$$

- **Intuition:** case-based reasoning

![Diagram](image.png)

Fig. 3.2. The law of total probability (illustration for $m = 5$).
Testing for Covid-19

A new test for Covid-19 (or Mad-Cow disease, or drug use) has been developed.

- $+ = \{ \text{people tested positive} \}$ $- = \{ \text{people tested negative}\} = +^c$
- $C = \{ \text{people with Covid-19}\}$ $C^c = \{ \text{people without Covid-19}\}$

In lab experiments, people with and without Covid-19 tested

- $P(+|C) = 0.99$ \textbf{[Sensitivity/Recall/True Positive Rate]}
- $P(-|C^c) = 0.99$ \textbf{[Specificity/True Negative Rate]}

What is the probability I really have Covid-19 given that I tested positive? \textbf{[Precision]}

$$P(C|+) = \frac{P(C \cap +)}{P(+)} = \frac{P(+|C) \cdot P(C)}{P(+)} = \frac{P(+|C) \cdot P(C)}{P(+|C) \cdot P(C) + P(+|C^c) \cdot P(C^c)}$$

$$P(C|+) = \frac{0.99 \cdot P(C)}{0.99 \cdot P(C) + 0.01 \cdot (1 - P(C))}$$
Testing for Covid-19

$P(C)$, the probability of having Covid-19, **is unknown**. Let’s plot $P(C|\ +)$ over $P(C)$:

- For $P(C) = 0.02$, $P(C|\ +) = 0.67$
- For $P(C) = 0.06$, $P(C|\ +) = 0.86$
- For $P(C) = 0.10$, $P(C|\ +) = 0.92$
Bayes’ Rule

Bayes’ Rule. Suppose the events \(C_1, C_2, \ldots, C_m \) are disjoint and \(C_1 \cup C_2 \cup \cdots \cup C_m = \Omega \). The conditional probability of \(C_i \), given an arbitrary event \(A \), can be expressed as:

\[
P(C_i \mid A) = \frac{P(A \mid C_i) \cdot P(C_i)}{P(A \mid C_1)P(C_1) + P(A \mid C_2)P(C_2) + \cdots + P(A \mid C_m)P(C_m)}.
\]

- It follows from \(P(C_i \mid A) = \frac{P(A \mid C_i) \cdot P(C_i)}{P(A)} \) and the law of total probability
- Useful when:
 - \(P(C_i \mid A) \) not easy to calculate
 - while \(P(A \mid C_j) \) and \(P(C_j) \) are known for \(j = 1, \ldots, m \)
 - E.g., in classification problems (see Bayesian classifiers from Data Mining)
- \(P(C_i) \) is called the *prior* probability
- \(P(C_i \mid A) \) is called the *posterior* probability (after seeing event \(A \))
Independence of events

Intuition: whether one event provides any information about another.

Definition. An event A is called independent of B if

\[P(A | B) = P(A). \]

- For $P(C) = 0.10$, $P(C|+) = .92$ - knowing test result changes prob. of being infected!
- Tossing 2 coins:
 - A_1 is “H on toss 1” and A_2 is “H on toss 2”
 - $P(A_1) = P(A_2) = \frac{1}{2}$
 - $P(A_2 | A_1) = P(A_2 \cap A_1) / P(A_1) = \frac{1}{4} / \frac{1}{2} = \frac{1}{2} = P(A_1)$
- Properties:
 - A independent of B iff $P(A \cap B) = P(A) \cdot P(B)$
 - A independent of B iff B independent of A

[Symmetry]
Independence of two or more events

It is **stronger** than pairwise independence

\[
P(A_i \cap A_j) = P(A_i) \cdot P(A_j) \text{ for } i \neq j \in \{1, \ldots, m\}
\]
Independence of two or more events

Alternative definition

Events \(A_1, A_2, \ldots, A_m\) are called independent if

\[
P(\bigcap_{i \in J} A_i) = \prod_{i \in J} P(A_i)
\]

for every \(J \subseteq \{1, \ldots, m\}\)

- **Exercise at home:** show the two definitions are equivalent
- **Example:** what is the probability of at least one head in the first 10 tosses of a coin?

\(A_i = \{\text{head in} \ i\text{-th toss}\}\)

\[
P\left(\bigcup_{i=1}^{10} A_i\right) = 1 - P\left(\bigcap_{i=1}^{10} A_i^c\right) = 1 - \prod_{i=1}^{10} P(A_i^c) = 1 - \prod_{i=1}^{10} (1 - P(A_i))
\]