Scale

 Many of the things that scientists measure have a
typical scale - a typical value around which
individual measurements are centered.

* As an example consider the heights of human
beings. j
The max/min ratio "

1s 272/57=4.8
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Scale free variables

* There are other quantities that do not seem to have a
typical scale.

* As an example consider the sizes of towns and cities.
The max/min ratio 1s of the order of 150,000 (It may
depends on the definition of town)
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* Note that all quantities must have a finite maximum
s1ze.



Scale free variables

* When we plot the histogram of city size in log-log scale
we get a straight line (Auerbach 1913, Zipt 1949)
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e A straight line 1n log-log scale implies a functional
dependence of the probability density p(x) of a city
with size x of the form

plxr) =Cx™“

e Distributions of this form are said to follow a power
law



Measuring power laws

Identifying power law behavior and measuring the exponent can be tricky.

The quick and dirty procedure is to plot the histogram in a log log scale and
fit a power law in some region.

This procedure presents several problems due to the noise of sampling errors.
These errors are large in the tail of the distribution, precisely where the power
law 1s more likely to hold.

Example: 1 million random numbers power law distributed with exponent
o=2.5 1.5 —
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Logarithmic binning

* An improvement in the identification of power law 1s

to compute the histogram by using bins of varying
width.

 The number of samples in a bin of width Ax, should be
divided by Ax to get a count per unit interval of x

e The most common binning is to create bins such that
each 1s a fixed multiple wider than the one before it
(E.g. [1;1.1],[1.1;1.3],[1.3:1.7],...).
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Cumulative distribution function

* Plotting the cumulative
distribution function 1s o @
equivalent to do a rank
plot and to switch x and
y axis

e It 1s the best way to plot
power law distribution
because 0 w0 w0

— the noise 1s reduced X
— all the data are used
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xamples of power laws distributions
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Power laws distributions in Economics
Asset returns (Stanley 1998)
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Fig. 1. Histogram of U.S. firm sizes,
by employees. Data are for 1997
from the U.S. Census Bureau, tab-
ulated in bins having width in-
creasing in powers of three (30).
The solid line is the OLS regression
line through the data, and it has a
slope of 2.059 (SE = 0.054; adjust-
ed R? = 0.992), meaning that «

1.059; maximum likelihood and
nonparametric methods yield sim-
ilar results. The data are slightly
concave to the origin in log-log
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coordinates, reflecting finite size
cutoffs at the limits of very small
and very large firms.

Income (Fujiwara
2002)
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