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7.3.4 Normal Deviates by Transformation (Box-Muller)
Transformation methods generalize to more than one dimension. If x1; x2; : : :

are random deviates with a joint probability distribution p.x1; x2; : : :/dx1dx2 : : : ,
and if y1; y2; : : : are each functions of all the x’s (same number of y’s as x’s), then
the joint probability distribution of the y’s is

p.y1; y2; : : :/dy1dy2 : : : D p.x1; x2; : : :/
ˇ̌
ˇ̌@.x1; x2; : : :/
@.y1; y2; : : :/

ˇ̌
ˇ̌ dy1dy2 : : : (7.3.10)

where j@. /=@. /j is the Jacobian determinant of the x’s with respect to the y’s
(or the reciprocal of the Jacobian determinant of the y’s with respect to the x’s).

An important historical example of the use of (7.3.10) is the Box-Muller method
for generating random deviates with a normal (Gaussian) distribution (!6.14.1):

p.y/dy D 1p
2"
e!y

2=2dy (7.3.11)

Consider the transformation between two uniform deviates on (0,1), x1; x2, and two
quantities y1; y2,

y1 D
p
!2 ln x1 cos 2"x2

y2 D
p
!2 ln x1 sin 2"x2

(7.3.12)

Equivalently we can write

x1 D exp
!
!1
2
.y21 C y22/

"

x2 D
1

2"
arctan

y2

y1

(7.3.13)

Now the Jacobian determinant can readily be calculated (try it!):

@.x1; x2/

@.y1; y2/
D
ˇ̌
ˇ̌
ˇ

@x1
@y1

@x1
@y2

@x2
@y1

@x2
@y2

ˇ̌
ˇ̌
ˇ D !

!
1p
2"
e!y

2
1=2

" !
1p
2"
e!y

2
2=2

"
(7.3.14)

Since this is the product of a function of y2 alone and a function of y1 alone, we see
that each y is independently distributed according to the normal distribution (7.3.11).

One further trick is useful in applying (7.3.12). Suppose that, instead of picking
uniform deviates x1 and x2 in the unit square, we instead pick v1 and v2 as the
ordinate and abscissa of a random point inside the unit circle around the origin. Then
the sum of their squares, R2 " v21 C v22 , is a uniform deviate, which can be used for
x1, while the angle that .v1; v2/ defines with respect to the v1-axis can serve as the
random angle 2"x2. What’s the advantage? It’s that the cosine and sine in (7.3.12)
can now be written as v1=

p
R2 and v2=

p
R2, obviating the trigonometric function

calls! (In the next section we will generalize this trick considerably.)
Code for generating normal deviates by the Box-Muller method follows. Con-

sider it for pedagogical use only, because a significantly faster method for generating
normal deviates is coming, below, in !7.3.9.
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struct Normaldev_BM : Ran { deviates.h
Structure for normal deviates.

Doub mu,sig;
Doub storedval;
Normaldev_BM(Doub mmu, Doub ssig, Ullong i)
: Ran(i), mu(mmu), sig(ssig), storedval(0.) {}
Constructor arguments are !, " , and a random sequence seed.
Doub dev() {
Return a normal deviate.

Doub v1,v2,rsq,fac;
if (storedval == 0.) { We don’t have an extra deviate handy, so

do {
v1=2.0*doub()-1.0; pick two uniform numbers in the square ex-

tending from -1 to +1 in each direction,v2=2.0*doub()-1.0;
rsq=v1*v1+v2*v2; see if they are in the unit circle,

} while (rsq >= 1.0 || rsq == 0.0); or try again.
fac=sqrt(-2.0*log(rsq)/rsq); Now make the Box-Muller transformation to

get two normal deviates. Return one and
save the other for next time.

storedval = v1*fac;
return mu + sig*v2*fac;

} else { We have an extra deviate handy,
fac = storedval;
storedval = 0.;
return mu + sig*fac; so return it.

}
}

};

7.3.5 Rayleigh Deviates
The Rayleigh distribution is defined for positive z by

p.z/dz D z exp
!
!12z

2
"
dz .z > 0/ (7.3.15)

Since the indefinite integral can be done analytically, and the result easily inverted, a
simple transformation method from a uniform deviate x results:

z D
p
!2 ln x; x " U.0; 1/ (7.3.16)

A Rayleigh deviate z can also be generated from two normal deviates y1 and
y2 by

z D
q
y21 C y22 ; y1; y2 " N.0; 1/ (7.3.17)

Indeed, the relation between equations (7.3.16) and (7.3.17) is immediately evident
in the equation for the Box-Muller method, equation (7.3.12), if we square and sum
that method’s two normal deviates y1 and y2.

7.3.6 Rejection Method
The rejection method is a powerful, general technique for generating random

deviates whose distribution function p.x/dx (probability of a value occurring be-
tween x and x C dx) is known and computable. The rejection method does not re-
quire that the cumulative distribution function (indefinite integral of p.x/) be readily
computable, much less the inverse of that function — which was required for the
transformation method in the previous section.

The rejection method is based on a simple geometrical argument (Figure 7.3.2):
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Figure 7.3.2. Rejection method for generating a random deviate x from a known probability distribution
p.x/ that is everywhere less than some other function f .x/. The transformation method is first used to
generate a random deviate x of the distribution f (compare Figure 7.3.1). A second uniform deviate is
used to decide whether to accept or reject that x. If it is rejected, a new deviate of f is found, and so on.
The ratio of accepted to rejected points is the ratio of the area under p to the area between p and f .

Draw a graph of the probability distribution p.x/ that you wish to generate, so
that the area under the curve in any range of x corresponds to the desired probability
of generating an x in that range. If we had some way of choosing a random point in
two dimensions, with uniform probability in the area under your curve, then the x
value of that random point would have the desired distribution.

Now, on the same graph, draw any other curve f .x/ that has finite (not infinite)
area and lies everywhere above your original probability distribution. (This is always
possible, because your original curve encloses only unit area, by definition of prob-
ability.) We will call this f .x/ the comparison function. Imagine now that you have
some way of choosing a random point in two dimensions that is uniform in the area
under the comparison function. Whenever that point lies outside the area under the
original probability distribution, we will reject it and choose another random point.
Whenever it lies inside the area under the original probability distribution, we will
accept it.

It should be obvious that the accepted points are uniform in the accepted area,
so that their x values have the desired distribution. It should also be obvious that
the fraction of points rejected just depends on the ratio of the area of the comparison
function to the area of the probability distribution function, not on the details of shape
of either function. For example, a comparison function whose area is less than 2 will
reject fewer than half the points, even if it approximates the probability function very
badly at some values of x, e.g., remains finite in some region where p.x/ is zero.

It remains only to suggest how to choose a uniform random point in two dimen-
sions under the comparison function f .x/. A variant of the transformation method
(!7.3) does nicely: Be sure to have chosen a comparison function whose indefinite
integral is known analytically, and is also analytically invertible to give x as a func-
tion of “area under the comparison function to the left of x.” Now pick a uniform
deviate between 0 and A, where A is the total area under f .x/, and use it to get a
corresponding x. Then pick a uniform deviate between 0 and f .x/ as the y value
for the two-dimensional point. Finally, accept or reject according to whether it is
respectively less than or greater than p.x/.

So, to summarize, the rejection method for some given p.x/ requires that one
find, once and for all, some reasonably good comparison function f .x/. Thereafter,
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each deviate generated requires two uniform random deviates, one evaluation of f
(to get the coordinate y) and one evaluation of p (to decide whether to accept or
reject the point x; y). Figure 7.3.1 illustrates the whole process. Then, of course,
this process may need to be repeated, on the average, A times before the final deviate
is obtained.

7.3.7 Cauchy Deviates
The “further trick” described following equation (7.3.14) in the context of the

Box-Muller method is now seen to be a rejection method for getting trigonometric
functions of a uniformly random angle. If we combine this with the explicit formula,
equation (6.14.6), for the inverse cdf of the Cauchy distribution (see !6.14.2), we can
generate Cauchy deviates quite efficiently.

struct Cauchydev : Ran { deviates.h
Structure for Cauchy deviates.

Doub mu,sig;
Cauchydev(Doub mmu, Doub ssig, Ullong i) : Ran(i), mu(mmu), sig(ssig) {}
Constructor arguments are !, " , and a random sequence seed.
Doub dev() {
Return a Cauchy deviate.

Doub v1,v2;
do { Find a random point in the unit semicircle.

v1=2.0*doub()-1.0;
v2=doub();

} while (SQR(v1)+SQR(v2) >= 1. || v2 == 0.);
return mu + sig*v1/v2; Ratio of its coordinates is the tangent of a

random angle.}
};

7.3.8 Ratio-of-Uniforms Method
In finding Cauchy deviates, we took the ratio of two uniform deviates chosen

to lie within the unit circle. If we generalize to shapes other than the unit circle, and
combine it with the principle of the rejection method, a powerful variant emerges.
Kinderman and Monahan [1] showed that deviates of virtually any probability distri-
bution p.x/ can be generated by the following rather amazing prescription:

! Construct the region in the .u; v/ plane bounded by 0 " u " Œp.v=u/"1=2.
! Choose two deviates, u and v, that lie uniformly in this region.
! Return v=u as the deviate.

Proof: We can represent the ordinary rejection method by the equation in the
.x; p/ plane,

p.x/dx D
Z p0Dp.x/

p0D0
dp0dx (7.3.18)

Since the integrand is 1, we are justified in sampling uniformly in .x; p0/ as long as
p0 is within the limits of the integral (that is, 0 < p0 < p.x/). Now make the change
of variable

v

u
D x

u2 D p
(7.3.19)


