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that is, the prior probability mass function is proportional to
∏L

ℓ=1 wa−1
ℓ .

Then the posterior density of w is

w ∼ DiL(a1 + Nŵ), (8.33)

where N is the sample size. Letting a → 0 to obtain a noninformative prior
gives

w ∼ DiL(Nŵ). (8.34)

Now the bootstrap distribution, obtained by sampling with replacement
from the data, can be expressed as sampling the category proportions from
a multinomial distribution. Specifically,

Nŵ∗ ∼ Mult(N, ŵ), (8.35)

where Mult(N, ŵ) denotes a multinomial distribution, having probability

mass function
( N
Nŵ∗

1 ,...,Nŵ∗
L

) ∏
ŵ

Nŵ∗
ℓ

ℓ . This distribution is similar to the pos-

terior distribution above, having the same support, same mean, and nearly
the same covariance matrix. Hence the bootstrap distribution of S(ŵ∗) will
closely approximate the posterior distribution of S(w).

In this sense, the bootstrap distribution represents an (approximate)
nonparametric, noninformative posterior distribution for our parameter.
But this bootstrap distribution is obtained painlessly—without having to
formally specify a prior and without having to sample from the posterior
distribution. Hence we might think of the bootstrap distribution as a “poor
man’s” Bayes posterior. By perturbing the data, the bootstrap approxi-
mates the Bayesian effect of perturbing the parameters, and is typically
much simpler to carry out.

8.5 The EM Algorithm

The EM algorithm is a popular tool for simplifying difficult maximum
likelihood problems. We first describe it in the context of a simple mixture
model.

8.5.1 Two-Component Mixture Model

In this section we describe a simple mixture model for density estimation,
and the associated EM algorithm for carrying out maximum likelihood
estimation. This has a natural connection to Gibbs sampling methods for
Bayesian inference. Mixture models are discussed and demonstrated in sev-
eral other parts of the book, in particular Sections 6.8, 12.7 and 13.2.3.

The left panel of Figure 8.5 shows a histogram of the 20 fictitious data
points in Table 8.1.
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FIGURE 8.5. Mixture example. (Left panel:) Histogram of data. (Right panel:)
Maximum likelihood fit of Gaussian densities (solid red) and responsibility (dotted
green) of the left component density for observation y, as a function of y.

TABLE 8.1. Twenty fictitious data points used in the two-component mixture
example in Figure 8.5.

-0.39 0.12 0.94 1.67 1.76 2.44 3.72 4.28 4.92 5.53
0.06 0.48 1.01 1.68 1.80 3.25 4.12 4.60 5.28 6.22

We would like to model the density of the data points, and due to the
apparent bi-modality, a Gaussian distribution would not be appropriate.
There seems to be two separate underlying regimes, so instead we model
Y as a mixture of two normal distributions:

Y1 ∼ N(µ1,σ
2
1),

Y2 ∼ N(µ2,σ
2
2), (8.36)

Y = (1 − ∆) · Y1 + ∆ · Y2,

where ∆ ∈ {0, 1} with Pr(∆ = 1) = π. This generative representation is
explicit: generate a ∆ ∈ {0, 1} with probability π, and then depending on
the outcome, deliver either Y1 or Y2. Let φθ(x) denote the normal density
with parameters θ = (µ,σ2). Then the density of Y is

gY (y) = (1 − π)φθ1(y) + πφθ2(y). (8.37)

Now suppose we wish to fit this model to the data in Figure 8.5 by maxi-
mum likelihood. The parameters are

θ = (π, θ1, θ2) = (π, µ1,σ
2
1 , µ2,σ

2
2). (8.38)

The log-likelihood based on the N training cases is

ℓ(θ;Z) =
N∑

i=1

log[(1 − π)φθ1(yi) + πφθ2(yi)]. (8.39)
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Direct maximization of ℓ(θ;Z) is quite difficult numerically, because of
the sum of terms inside the logarithm. There is, however, a simpler ap-
proach. We consider unobserved latent variables ∆i taking values 0 or 1 as
in (8.36): if ∆i = 1 then Yi comes from model 2, otherwise it comes from
model 1. Suppose we knew the values of the ∆i’s. Then the log-likelihood
would be

ℓ0(θ;Z,∆) =
N∑

i=1

[(1 − ∆i) log φθ1(yi) + ∆i log φθ2(yi)]

+
N∑

i=1

[(1 − ∆i) log(1 − π) + ∆i log π] , (8.40)

and the maximum likelihood estimates of µ1 and σ2
1 would be the sample

mean and variance for those data with ∆i = 0, and similarly those for µ2

and σ2
2 would be the sample mean and variance of the data with ∆i = 1.

The estimate of π would be the proportion of ∆i = 1.
Since the values of the ∆i’s are actually unknown, we proceed in an

iterative fashion, substituting for each ∆i in (8.40) its expected value

γi(θ) = E(∆i|θ,Z) = Pr(∆i = 1|θ,Z), (8.41)

also called the responsibility of model 2 for observation i. We use a proce-
dure called the EM algorithm, given in Algorithm 8.1 for the special case of
Gaussian mixtures. In the expectation step, we do a soft assignment of each
observation to each model: the current estimates of the parameters are used
to assign responsibilities according to the relative density of the training
points under each model. In the maximization step, these responsibilities
are used in weighted maximum-likelihood fits to update the estimates of
the parameters.

A good way to construct initial guesses for µ̂1 and µ̂2 is simply to choose
two of the yi at random. Both σ̂2

1 and σ̂2
2 can be set equal to the overall

sample variance
∑N

i=1(yi − ȳ)2/N . The mixing proportion π̂ can be started
at the value 0.5.

Note that the actual maximizer of the likelihood occurs when we put a
spike of infinite height at any one data point, that is, µ̂1 = yi for some
i and σ̂2

1 = 0. This gives infinite likelihood, but is not a useful solution.
Hence we are actually looking for a good local maximum of the likelihood,
one for which σ̂2

1 , σ̂2
2 > 0. To further complicate matters, there can be

more than one local maximum having σ̂2
1 , σ̂2

2 > 0. In our example, we
ran the EM algorithm with a number of different initial guesses for the
parameters, all having σ̂2

k > 0.5, and chose the run that gave us the highest
maximized likelihood. Figure 8.6 shows the progress of the EM algorithm in
maximizing the log-likelihood. Table 8.2 shows π̂ =

∑
i γ̂i/N , the maximum

likelihood estimate of the proportion of observations in class 2, at selected
iterations of the EM procedure.
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Algorithm 8.1 EM Algorithm for Two-component Gaussian Mixture.

1. Take initial guesses for the parameters µ̂1, σ̂2
1 , µ̂2, σ̂2

2 , π̂ (see text).

2. Expectation Step: compute the responsibilities

γ̂i =
π̂φθ̂2

(yi)

(1 − π̂)φθ̂1
(yi) + π̂φθ̂2

(yi)
, i = 1, 2, . . . , N. (8.42)

3. Maximization Step: compute the weighted means and variances:

µ̂1 =

∑N
i=1(1 − γ̂i)yi∑N
i=1(1 − γ̂i)

, σ̂2
1 =

∑N
i=1(1 − γ̂i)(yi − µ̂1)2∑N

i=1(1 − γ̂i)
,

µ̂2 =

∑N
i=1 γ̂iyi∑N
i=1 γ̂i

, σ̂2
2 =

∑N
i=1 γ̂i(yi − µ̂2)2∑N

i=1 γ̂i

,

and the mixing probability π̂ =
∑N

i=1 γ̂i/N .

4. Iterate steps 2 and 3 until convergence.

TABLE 8.2. Selected iterations of the EM algorithm for mixture example.

Iteration π̂
1 0.485
5 0.493
10 0.523
15 0.544
20 0.546

The final maximum likelihood estimates are

µ̂1 = 4.62, σ̂2
1 = 0.87,

µ̂2 = 1.06, σ̂2
2 = 0.77,

π̂ = 0.546.

The right panel of Figure 8.5 shows the estimated Gaussian mixture density
from this procedure (solid red curve), along with the responsibilities (dotted
green curve). Note that mixtures are also useful for supervised learning; in
Section 6.7 we show how the Gaussian mixture model leads to a version of
radial basis functions.
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FIGURE 8.6. EM algorithm: observed data log-likelihood as a function of the
iteration number.

8.5.2 The EM Algorithm in General

The above procedure is an example of the EM (or Baum–Welch) algorithm
for maximizing likelihoods in certain classes of problems. These problems
are ones for which maximization of the likelihood is difficult, but made
easier by enlarging the sample with latent (unobserved) data. This is called
data augmentation. Here the latent data are the model memberships ∆i.
In other problems, the latent data are actual data that should have been
observed but are missing.

Algorithm 8.2 gives the general formulation of the EM algorithm. Our
observed data is Z, having log-likelihood ℓ(θ;Z) depending on parameters
θ. The latent or missing data is Zm, so that the complete data is T =
(Z,Zm) with log-likelihood ℓ0(θ;T), ℓ0 based on the complete density. In
the mixture problem (Z,Zm) = (y,∆), and ℓ0(θ;T) is given in (8.40).

In our mixture example, E(ℓ0(θ′;T)|Z, θ̂(j)) is simply (8.40) with the ∆i

replaced by the responsibilities γ̂i(θ̂), and the maximizers in step 3 are just
weighted means and variances.

We now give an explanation of why the EM algorithm works in general.
Since

Pr(Zm|Z, θ′) =
Pr(Zm,Z|θ′)

Pr(Z|θ′) , (8.44)

we can write

Pr(Z|θ′) =
Pr(T|θ′)

Pr(Zm|Z, θ′)
. (8.45)

In terms of log-likelihoods, we have ℓ(θ′;Z) = ℓ0(θ′;T)−ℓ1(θ′;Zm|Z), where
ℓ1 is based on the conditional density Pr(Zm|Z, θ′). Taking conditional
expectations with respect to the distribution of T|Z governed by parameter
θ gives

ℓ(θ′;Z) = E[ℓ0(θ
′;T)|Z, θ] − E[ℓ1(θ

′;Zm|Z)|Z, θ]


