Master Program in *Data Science and Business Informatics*

Statistics for Data Science
Lesson 35 - Testing independence/association, Multiple sample testing of the mean

Salvatore Ruggieri

Department of Computer Science
University of Pisa
salvatore.ruggieri@unipi.it
Testing independence/association: discrete data

- **Pearson’s Chi-Square test** of independence
- X and Y discrete (finite) distributions
- $(x_1, y_1), \ldots, (x_n, y_n)$ bivariate observed dataset
- $H_0 : X \perp \perp Y \quad H_1 : X \not\perp \perp Y$
- Test statistic:

\[
\chi^2 = \sum_{i,j} \frac{(O_{i,j} - E_{i,j})^2}{E_{i,j}} = n \sum_{i,j} \left(\frac{O_{i,j}/n - p_{i.,p.\cdot}}{p_{i.,p.\cdot}} \right)^2 \sim \chi^2(df)
\]

where $O_{i,j}$ is the number of observations of value $X = i$ and $Y = j$, $E_{i,j} = np_{i.,p.\cdot}$ where $p_{i,.} = \sum_j O_{i,j}/n$ and $p_{.,j} = \sum_i O_{i,j}/n$. $df = (n_x - 1)(n_y - 1)$ where n_x (resp., n_y) is the size of the support of X (resp., Y)

- Exact test when n is small: **Fisher’s exact test**
- Paired data (e.g., before and after taking a drug): **McNemar’s test**

See R script
Association between nominal variables: χ^2-based

- Association measures based on Pearson χ^2
 - ϕ coefficient (or MCC, Matthews correlation coefficient)
 - For 2×2 contingency tables:
 $$\phi = \sqrt{\frac{\chi^2}{n}} \in [0, 1]$$

- Cramer’s V
 - For contingency tables larger than 2×2:
 $$V = \sqrt{\frac{\chi^2}{n \cdot \min\{r - 1, c - 1\}}} \in [0, 1]$$
 where r and c are the number of rows and columns

- Tschuprov’s T
 - For contingency tables larger than 2×2:
 $$T = \sqrt{\frac{\chi^2}{n \cdot \sqrt{(r - 1)(c - 1)}}} \in [0, 1]$$
 where r and c are the number of rows and columns

[See [Lesson 16]]

[Exercise. Show $\phi = |r_{xy}|$]

[See R script]
The G-test and Mutual Information

- **G-test** of independence
- X and Y discrete (finite) distributions
- $(x_1, y_1), \ldots, (x_n, y_n)$ bivariate observed dataset
- $H_0 : X \perp \perp Y \quad H_1 : X \not\perp \perp Y$
- Test statistic:
 \[
 G = 2 \sum_{i,j} O_{i,j} \log \frac{O_{i,j}}{E_{i,j}} = 2 \sum_{i,j} O_{i,j} \log \frac{O_{i,j}}{np_{i,.}p_{.j}} \sim \chi^2(df)
 \]
 where $O_{i,j}$ is the number of observations of value $X = i$ and $Y = j$, $E_{i,j} = np_{i,.}p_{.j}$ where $p_{i,.} = \sum_j O_{i,j}/n$ and $p_{.j} = \sum_i O_{i,j}/n$. $df = (n_x - 1)(n_y - 1)$ where n_x (resp., n_y) is the size of the support of X (resp., Y)
- Preferrable to Chi-Squared when numbers (O_{ij} or E_{ij}) are small, asymptotically equivalent
- $G = 2 \cdot n \cdot I(O, E)$ where $I(O, E)$ is the mutual information between O and E \[\text{[See Lesson 16]}\]

See R script
Testing correlation: continuous data

- Population correlation:
 \[\rho = \frac{E[(X - \mu_X) \cdot (Y - \mu_Y)]}{\sigma_X \cdot \sigma_Y} \]

- Pearson’s correlation coefficient:
 \[r = \frac{\sum_{i=1}^{n}(x_i - \bar{x}) \cdot (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n}(x_i - \bar{x})^2 \cdot \sum_{i=1}^{n}(y_i - \bar{y})^2}} \]

- Assumption: joint distribution of \(X, Y \) is bivariate normal (or large sample)
- \((x_1, y_1), \ldots, (x_n, y_n) \) bivariate observed dataset
- \(H_0 : \rho = 0 \quad H_1 : \rho \neq 0 \)
- Test statistics:
 \[T = \frac{r \sqrt{n-2}}{\sqrt{1 - r^2}} \sim t(n-2) \]

See R script
Testing AUC-ROC

- Binary classifier score $s_\theta(w) \in [0, 1]$ where $s_\theta(w)$ estimate $\eta(w) = P_{\theta_{TRUE}}(C = 1|W = w)$
- ROC Curve
 - $TPR(p) = P(s_\theta(w) \geq p|C = 1)$ and $FPR(p) = P(s_\theta(w)|C = 0)$
 - ROC Curve is the scatter plot $TPR(p)$ over $FPR(p)$ for p ranging from 1 down to 0
 - AUC-ROC is the area below the curve
 - Linearly related to Somer’s D correlation index (a.k.a. Gini coefficient) [See Lesson 16]
Testing AUC-ROC

- AUC is the probability of correct identification of the order between two instances:

\[
AUC = P_{\theta^{\text{TRUE}}}(s_{\theta}(W1) < s_{\theta}(W2) | C_{W1} = 0, C_{W2} = 1)
\]

where \((W1, C_{W1}) \sim f_{\theta^{\text{TRUE}}}\) and \((W2, C_{W2}) \sim f_{\theta^{\text{TRUE}}}\)

- \(s_{\theta}(W_1), \ldots, s_{\theta}(W_n) \sim F_{\theta^{\text{TRUE}}} | C = 1\) and \(s_{\theta}(V_1), \ldots, s_{\theta}(V_m) \sim F_{\theta^{\text{TRUE}}} | C = 0\)

\[
U = \sum_{i=1}^{n} \sum_{j=1}^{m} S(s_{\theta}(W_i), s_{\theta}(V_j))
\]

\[
S(X, Y) = \begin{cases}
1 & \text{if } X > Y \\
1/2 & \text{if } X = Y \\
0 & \text{if } X < Y
\end{cases}
\]

- **AUC-ROC** = \(U / (n \cdot m)\) is an estimator of **AUC**

- Related to \(W = U + \frac{n(n+1)}{2}\), where \(W\) is the **Wilcoxon rank-sum test statistics** [See Lesson 34]

- Normal approximation, DeLong’s algorithm or bootstrap for confidence interval estimation

See R script
Omnibus tests and post-hoc tests

- **H_0**: $\theta_1 = \theta_2 = \ldots = \theta_k$ [$= 0$]
- **H_1**: $\theta_i \neq \theta_j$ for some $i \neq j$
- **Omnibus tests** detect any of several possible differences
 - Advantage: no need to pre-specify which treatments are to be compared . . .
 - . . . and then no need to adjust for making multiple comparisons
- If H_1 is rejected (test significant), a **post-hoc test** to find which $\theta_i \neq \theta_j$
 - Everything to everything post-hoc compare all pairs
 - One to everything post-hoc compare a new population to all the others
- We distinguish a few cases:
 - Multiple linear regression (normal errors + homogeneity of variances, i.e., $U_i \sim N(0, \sigma^2)$):
 - F-test + t-test
 - Equality of means (normal distributions + homogeneity of variances):
 - ANOVA + Tukey/Dunnett
 - Equality of means (general distributions):
 - Friedman + Nemenyi
F-test for multiple linear regression

- \(\mathbf{Y} = \mathbf{X} \cdot \mathbf{\beta} + \mathbf{U} \), where \(\mathbf{Y} = (Y_1, \ldots, Y_n) \), \(\mathbf{U} = (U_1, \ldots, U_n) \), and \(\mathbf{X} = (x_1, \ldots, x_n) \)
 - \(\mathbf{\beta}^T = (\alpha, \beta_1, \ldots, \beta_k) \) and \(x_i = (1, x^1_i, \ldots, x^k_i) \)
 - Unexplained (residual) error \(SSE = S(\mathbf{\beta}) = \sum_{i=1}^{n}(y_i - x_i \cdot \mathbf{\beta})^2 \)

- Null model (or intercept-only model): \(\mathbf{Y} = \mathbf{1} \cdot \alpha + \mathbf{U} \)
 - Total error \(SST = S(\alpha) = \sum_{i=1}^{n}(y_i - \bar{y}_n)^2 \) [residuals of the null model]

- Explained error \(SSR = SST - SSE = \sum_{i=1}^{n}(\bar{y}_n - x_i \cdot \mathbf{\beta})^2 \)

- Coefficient of determination \(R^2 = SSR / SST = 1 - SSE / SST \) [See Lesson 20]
 - Is the model useful? Fraction of explained error

Is the model statistically significant? [vs a specific \(\beta_i \) significant? See Lesson 29]

- \(H_0 : \beta_1 = \ldots = \beta_k = 0 \quad H_1 : \beta_i \neq 0 \) for all \(i = 1, \ldots, k \)
- Test statistic: \(F = \frac{SSR}{SSE} \frac{n-k-1}{k} \sim F(k, n-k-1) \)

See R script
Equality of means: ANOVA

- $H_0 : \mu_1 = \mu_2 = \ldots = \mu_k$ [generalization of two sample t-test]
- $H_1 : \mu_1 \neq \mu_2$ for some $i \neq j$
- datasets y_{j1}, \ldots, y_{jn_j} for $j = 1, \ldots, k$
 - Assumption: normality (Shapiro-Wilk test) + homogeneity of variances (Bartlett test)
 - responses of $k-1$ treatments and 1 control group [one way ANOVA]
 - accuracies of k classifiers over $n_j = n$ datasets [repeated measures/two way ANOVA]
- Linear regression model over dummy encoded j:
 \[Y = \alpha + \beta_1 x_1 + \ldots + \beta_{k-1} x_{k-1} \]
 - $\alpha = \mu_k$ is the mean of the reference group ($j = k$)
 - $\beta_j = \mu_j - \mu_k$
 - in R: `lm(Y ~ Group)` where Group contains the labels of $j = 1, \ldots, k$
- F-test (over linear regression): $H_0 : \beta_1 = \ldots = \beta_k = 0$, i.e., $\mu_j = \mu_k$ for $j = 1, \ldots, k$
- Tukey HSD (Honest Significant Differences) is an all-pairs post-hoc test
- Dunnet test is a one-to-everything test

 See R script
Non-parametric test of equality of means: Friedman

- $H_0 : \mu_1 = \mu_2 = \ldots = \mu_k$
- $H_1 : \mu_1 \neq \mu_2$ for some $i \neq j$
- datasets x_1^j, \ldots, x_n^j for $j = 1, \ldots, k$
 - accuracies of k classifiers over n datasets
- Let r_i^j be the rank of x_i^j in x_1^j, \ldots, x_i^k
 - e.g., j^{th} classifier w.r.t. i^{th} dataset
- Average rank of classifier: $R_j = \frac{1}{n} \sum_{i=1}^{n} r_i^j$
- Under H_0, we have $R_1 = \ldots = R_k$ and, for n and k large:
 \[
 \chi^2_F = \frac{12n}{k(k+1)} \left(\sum_{j=1}^{k} R_j^2 - \frac{k(k+1)^2}{4} \right) \sim \chi^2(k)
 \]
- Nemenyi test is an all-pairs post-hoc test
- Bonferroni correction is a one-to-everything test
- For unpaired observations, use **Kruskal-Wallis test** instead of Friedman test

See R script
Optional reference

- On confidence intervals and statistical tests (with R code)

 Myles Hollander, Douglas A. Wolfe, and Eric Chicken (2014)
 Nonparametric Statistical Methods.
 3rd edition, John Wiley & Sons, Inc.