Master Program in Data Science and Business Informatics **Statistics for Data Science** Lesson 34 - Fitting distributions. Testing independence/association

Salvatore Ruggieri

Department of Computer Science University of Pisa salvatore.ruggieri@unipi.it

Distribution fitting and quality of fitting

- Dataset x_1, \ldots, x_n realization of $X_1, \ldots, X_n \sim F$
- Distribution fitting: What is a plausible F?
 - Useful in Data Science for understanding the data generation process, for checking assumptions (e.g., normality of noise in LR), for checking data distribution changes, etc.
 - Parametric approaches:
 - \Box Assume $F = F(\lambda)$ for some family F, and estimate λ as $\hat{\lambda}$
 - Maximum Likelihood Estimation (point estimate):

$$\hat{\lambda} = {\sf argmax}_{\lambda} {\sf L}(\lambda)$$

□ Parametric bootstrap (*p*-value):

$$T_{ks} = \sup_{a \in \mathbb{R}} |F_n^*(a) - F_{\hat{\Lambda}^*}(a)|$$

- Non-parametric approaches:
 - \Box Empirical distribution F_n
 - Kernel Density Estimation
- Quality of fitting: Among several fits F_1, \ldots, F_k , which one is the best?
 - ► Goodness of fit: measure of how good/bad is *F_i* in fitting the data?
 - ► Comparison: which one between two *F*₁ and *F*₂ is better?

[Glivenko-Cantelli Thm] [See Lesson 15]

[See Lesson 19]

[See Lesson 28]

Quality of fitting

- Loss functions (to be minimized)
 - Akaike information criterion (AIC), balances model fit against model simplicity

$$AIC(F(\lambda)) = 2|\lambda| - 2\ell(\lambda)$$

Bayesian information criterion (BIC), stronger balances over model simplicity

$$BIC(F(\lambda)) = |\lambda| \log n - 2\ell(\lambda)$$

- Statistics (continuous data):
 - ▶ KS test $H_0: X \sim F$ $H_1: X \not\sim F$ with Kolmogorov-Smirnov (KS) statistic:

$$D = \sup_{a \in \mathbb{R}} |F_n(a) - F(a)| \sim K$$

▶ LR test $H_0: X \sim F_1$ $H_1: X \sim F_2$ with the likelihood-ratio test:

$$\lambda_{LR} = \log \frac{L(F_1(\lambda_1))}{L(F_2(\lambda_2))} = \ell(F_1(\lambda_1)) - \ell(F_2(\lambda_2)) \quad \text{with} \quad -2\lambda_{LR} \sim \chi^2(1)$$

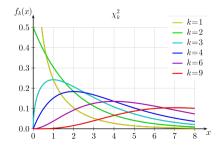
Chi-square distribution

Chi-square distribution

The Chi-square distribution with k degrees of freedom $\chi^2(k)$ has density:

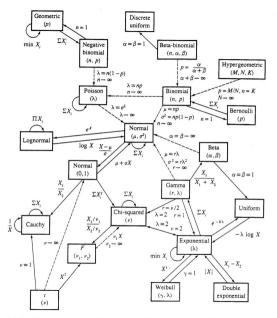
$$f(x) = \frac{1}{2^{k/2} \Gamma(k/2)} x^{k/2-1} e^{-x/2}$$

Let
$$X_1, ..., X_k \sim N(0, 1)$$
. Then $Y = \sum_{i=1}^k X_i^2 \sim \chi^2(k)$



Common distributions

- Probability distributions at Wikipedia
- Probability distributions in R
- C. Forbes, M. Evans, N. Hastings, B. Peacock (2010) Statistical Distributions, 4th Edition Wiley



Relationships among common distributions. Solid lines represent transformations and special cases, dashed lines represent limits. Adapted from Leemis (1986). 5

Quality of fitting

- Statistics (discrete data):
 - ► Pearson's Chi-Square test

 $H_0: X \sim F$ $H_1: X \not\sim F$ with χ^2 statistic:

$$\chi^{2} = \sum_{N_{i}>0} \frac{(N_{i} - n_{i})^{2}}{n_{i}} = n \cdot \sum_{N_{i}>0} \frac{(N_{i} / n - p(i))^{2}}{p(i)} \sim \chi^{2}(df)$$

where N_i number of observations of value *i*, $n_i = n \cdot p(i)$ expected number of observations (rescaled), and $df = |\{i \mid N_i > 0\}| - 1$ is the number of observed values minus 1. $\chi^2 = \infty$ if for some *i*: $n_i = 0$

Yates's correction for continuity

It corrects for approximating the discrete probability of observed frequencies by the continuous chi-squared distribution

$$\chi^2 = \sum_{N_i > 0} \frac{(|N_i - n_i| - 0.5)^2}{n_i}$$

It increases Type II error, so do not use it!

Comparing two datasets

- Dataset x_1, \ldots, x_n realization of $X_1, \ldots, X_n \sim F_1$
- Dataset y_1, \ldots, y_m realization of $Y_1, \ldots, Y_n \sim F_2$
- $H_0: F_1 = F_2$ $H_1: F_1 \neq F_2$
 - Useful to detect covariate drift (data stability) from source to target datasets
- Univariate data:
 - Continuous data: KS statistics $D = \sup_{a \in \mathbb{R}} |F_1(a) F_2(a)| \sim K$
 - Discrete data: χ^2 statistics

$$\chi^2 = \sum_{R_i > 0 \lor S_i > 0} \frac{(\sqrt{\frac{m}{n}}R_i - \sqrt{\frac{m}{m}}S_i)^2}{R_i + S_i} \sim \chi^2(df)$$

where R_i (resp., S_i) is the number of variables in X_1, \ldots, X_n (resp., Y_1, \ldots, Y_m) which are equal to i, $df = |\{i | R_i > 0 \lor S_i > 0\}| - 1$

- Other tests in the R package twosamples
- Multivariate data: see classifier 2-sample test and others in the R package Ecume

Testing independence:

- Pearson's Chi-Square test of independence
- X and Y discrete (finite) distributions
- $(x_1, y_1) \dots, (x_n, y_n)$ bivariate observed dataset
- $H_0: X \perp Y \quad H_1: X \not\perp Y$
- Test statistic:

$$\chi^{2} = \sum_{i,j} \frac{(O_{i,j} - E_{i,j})^{2}}{E_{i,j}} = n \sum_{i,j} \frac{(O_{i,j}/n - p_{i,j}, p_{i,j})^{2}}{p_{i,j}, p_{i,j}} \sim \chi^{2}(df)$$

where $O_{i,j}$ is the number of observations of value X = i and Y = j, $E_{i,j} = np_{i,.}p_{.,j}$ where $p_{i,.} = \sum_j O_{i,j}/n$ and $p_{.,j} = \sum_i O_{i,j}/n$. $df = (n_x - 1)(n_y - 1)$ where n_x (resp., n_y) is the size of the support of X (resp., Y)

- Exact test when *n* is small: Fisher's exact test
- Paired data (e.g., before and after taking a drug): McNemar's test

The G-test and Mutual Information

- G-test of independence
- X and Y discrete (finite) distributions
- $(x_1, y_1) \dots, (x_n, y_n)$ bivariate observed dataset
- $H_0: X \perp Y \quad H_1: X \not\perp Y$
- Test statistics:

$$G = 2\sum_{i,j} O_{i,j} \log \frac{O_{i,j}}{E_{i,j}} = 2\sum_{i,j} O_{i,j} \log \frac{O_{i,j}}{n \rho_{i,.} \rho_{.,j}} \sim \chi^2(df)$$

where $O_{i,j}$ is the number of observations of value X = i and Y = j, $E_{i,j} = np_{i,.}p_{.,j}$ where $p_{i,.} = \sum_j O_{i,j}/n$ and $p_{.,j} = \sum_i O_{i,j}/n$. $df = (n_x - 1)(n_y - 1)$ where n_x (resp., n_y) is the size of the support of X (resp., Y)

- Preferrable to Chi-Squared when numbers $(O_{ij} \text{ or } E_{ij})$ are small, asymptotically equivalent
- $G = 2 \cdot n \cdot I(O, E)$ where I(O, E) is the mutual information between O and E [See Lesson 16]

Other tests of independence

- $(x_1, y_1) \dots, (x_n, y_n)$ bivariate observed dataset
- Permutation tests:
 - ► reduces to comparing two datasets: $(x_1, y_1) \dots, (x_n, y_n)$ and $(x_1, y_{\pi_1}) \dots, (x_n, y_{\pi_n})$, where π_1, \dots, π_n is a permutation of $1, \dots, n$ [see slide on comparing two datasets]
- Continuous X and Y:
 - ▶ discretize both X and Y and then apply independence tests for discrete r.v.'s, or
 - test correlation (see later), or
 - Hoeffding's test, see R package independence
- Continuous X and discrete Y:
 - discretize X and then apply independence tests for discrete r.v.'s, or
 - a direct approach Yang and Kim, or
 - ▶ special case Y binary: $X \perp Y$ iff P(X|Y) = P(X) iff P(X|Y = 0) = P(X|Y = 1)

[see slide on comparing two datasets]

Measures of association (from Lesson 16)

- Association: one variable provides information on the other
 - $X \perp Y$ independent, i.e., P(X|Y) = P(X): zero information
 - Y = f(X) deterministic association with f invertible: maximum information
- Correlation: the two variables show an increasing/decreasing trend
 - $X \perp Y$ implies Cov(X, Y) = 0
 - the converse is not always true

	Variable X		
Variable Y	Nominal	Ordinal	Continuous
Nominal Ordinal Continuous		Rank biserial $\tau_{_{\rm b}}$ or Spearman $\tau_{_{\rm b}}$ or Spearman	τ_{b} or Spearman

 $\phi=phi$ coefficient, $\lambda=Goodman$ and Kruskal's lambda,

 $\tau_{\rm b}$ = Kendall's $\tau_{\rm b}$.

Association between nominal variables: Pearson χ^2 -based

- ϕ **coefficient** (or MCC, Matthews correlation coefficient)
 - For 2×2 contingency tables:

$$\phi = \sqrt{rac{\chi^2}{n}} \in [0,1]$$

- Cramer's V
 - ► For contingency tables larger than 2 × 2:

$$V = \sqrt{\frac{\chi^2}{n \cdot \min\left\{r - 1, c - 1\right\}}} \in [0, 1]$$

where r and c are the number of rows and columns

- Tschuprov's T
 - ► For contingency tables larger than 2 × 2:

$$T = \sqrt{\frac{\chi^2}{n \cdot \sqrt{(r-1)(c-1)}}} \in [0,1]$$

where r and c are the number of rows and columns

See R script

[sames as V if r = c]

[Exercise. Show
$$\phi = |\mathbf{r}_{xy}|$$
]

Testing correlation: continuous data

• Population correlation:

$$o = \frac{E[(X - \mu_X) \cdot (Y - \mu_Y)]}{\sigma_X \cdot \sigma_Y}$$

• Pearson's correlation coefficient:

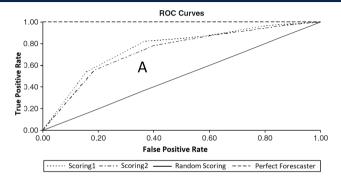
$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) \cdot (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \cdot \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

- Assumption: joint distribution of X, Y is bivariate normal (or large sample)
- $(x_1, y_1) \dots, (x_n, y_n)$ bivariate observed dataset
- $H_0: \rho = 0$ $H_1: \rho \neq 0$
- Test statistics:

$$T=\frac{r\sqrt{n-2}}{\sqrt{1-r^2}}\sim t(n-2)$$

► Recall that $X \perp Y$ implies $\rho = 0$: if H_0 can be rejected, then $X \perp Y$ can be rejected See R script

Testing AUC-ROC



- Binary classifier score $s_{ heta}(w) \in [0,1]$ where $s_{ heta}(w)$ estimate $\eta(w) = P_{\theta_{TRUE}}(C = 1|W = w)$
- ROC Curve
 - $TPR(p) = P(s_{\theta}(w) \ge p | C = 1)$ and $FPR(p) = P(s_{\theta}(w) | C = 0)$
 - ROC Curve is the scatter plot TPR(p) over FPR(p) for p ranging from 1 down to 0
 - ► AUC-ROC is the area below the curve What does AUC-ROC estimate?
 - Linearly related to Somer's D correlation index (a.k.a. Gini coefficient) [See Lesson 16]

Testing AUC-ROC

• AUC is the probability of correct identification of the order between two instances:

$$AUC = P_{ heta_{TRUE}}(s_{ heta}(W1) < s_{ heta}(W2) | C_{W1} = 0, C_{W2} = 1)$$

where (W1, C_{W1}) \sim $f_{ heta_{TRUE}}$ and (W2, C_{W2}) \sim $f_{ heta_{TRUE}}$

• $s_{\theta}(W_1), \ldots, s_{\theta}(W_n) \sim F_{\theta_{TRUE}}|_{C=1}$ and $s_{\theta}(V_1), \ldots, s_{\theta}(V_m) \sim F_{\theta_{TRUE}}|_{C=0}$

$$U = \sum_{i=1}^{n} \sum_{j=1}^{m} S(s_{\theta}(W_i), s_{\theta}(V_j)) \qquad S(X, Y) = \begin{cases} 1 & \text{if } X > Y \\ \frac{1}{2} & \text{if } X = Y \\ 0 & \text{if } X < Y \end{cases}$$

• AUC-ROC = $U/(n \cdot m)$ is an estimator of AUC

• Related to $W = U + \frac{n(n+1)}{2}$, where W is the Wilcoxon rank-sum test statistics [See Lesson 31]

• Normal approximation, DeLong's algorithm or bootstrap for confidence interval estimation