Master Program in *Data Science and Business Informatics*

Statistics for Data Science

Lesson 34 - Fitting distributions. Testing independence/association

Salvatore Ruggieri

Department of Computer Science
University of Pisa
salvatore.ruggieri@unipi.it
Distribution fitting and quality of fitting

• Dataset x_1, \ldots, x_n realization of $X_1, \ldots, X_n \sim F$

• **Distribution fitting**: What is a plausible F?
 ▶ Useful in Data Science for understanding the data generation process, for checking assumptions (e.g., normality of noise in LR), for checking data distribution changes, etc.
 ▶ Parametric approaches:
 □ Assume $F = F(\lambda)$ for some family F, and estimate λ as $\hat{\lambda}$
 □ Maximum Likelihood Estimation (point estimate):
 $$\hat{\lambda} = \arg\max_{\lambda} L(\lambda)$$
 □ Parametric bootstrap (p-value):
 $$T_{ks} = \sup_{a \in \mathbb{R}} |F_n^*(a) - F_{\hat{\lambda}^*}(a)|$$
 [See Lesson 28]
 ▶ Non-parametric approaches:
 □ Empirical distribution F_n
 □ Kernel Density Estimation
 [Glivenko-Cantelli Thm] [See Lesson 15]

• **Quality of fitting**: Among several fits F_1, \ldots, F_k, which one is the best?
 ▶ Goodness of fit: measure of how good/bad is F_i in fitting the data?
 ▶ Comparison: which one between two F_1 and F_2 is better?
Quality of fitting

- **Loss functions (to be minimized)**
 - Akaike information criterion (AIC), balances model fit against model simplicity
 \[AIC(F(\lambda)) = 2|\lambda| - 2\ell(\lambda) \]
 - Bayesian information criterion (BIC), stronger balances over model simplicity
 \[BIC(F(\lambda)) = |\lambda| \log n - 2\ell(\lambda) \]

- **Statistics (continuous data):**
 - **KS test** \(H_0 : X \sim F \quad H_1 : X \not\sim F \)** with Kolmogorov-Smirnov (KS) statistic:
 \[D = \sup_{a \in \mathbb{R}} |F_n(a) - F(a)| \sim K \]
 - **LR test** \(H_0 : X \sim F_1 \quad H_1 : X \sim F_2 \)** with the likelihood-ratio test:
 \[\lambda_{LR} = \log \frac{L(F_1(\lambda_1))}{L(F_2(\lambda_2))} = \ell(F_1(\lambda_1)) - \ell(F_2(\lambda_2)) \quad \text{with} \quad -2\lambda_{LR} \sim \chi^2(1) \]

See R script
Quality of fitting

- **Statistics (discrete data):**
 - **Pearson's Chi-Square test**

 \[H_0 : X \sim F \quad H_1 : X \not\sim F \]

 with \(\chi^2 \) statistic:

 \[
 \chi^2 = \sum_{N_i > 0} \frac{(N_i - n_i)^2}{n_i} = n \cdot \sum_{N_i > 0} \frac{(N_i/n - p(i))^2}{p(i)} \sim \chi^2(df)
 \]

 where \(N_i \) number of observations of value \(i \), \(n_i = n \cdot p(i) \) expected number of observations (rescaled), and \(df = |\{i | N_i > 0\}| - 1 \) is the number of observed values minus 1.

 \(\chi^2 = \infty \) if for some \(i \): \(n_i = 0 \)

 - **Yates's correction for continuity**

 It corrects for approximating the discrete probability of observed frequencies by the continuous chi-squared distribution

 \[
 \chi^2 = \sum_{N_i > 0} \frac{(|N_i - n_i| - 0.5)^2}{n_i}
 \]

 It increases Type II error, so do not use it!

See R script
Comparing two datasets

- Dataset x_1, \ldots, x_n realization of $X_1, \ldots, X_n \sim F$
- Dataset y_1, \ldots, y_m realization of $Y_1, \ldots, Y_m \sim G$
- $H_0 : F = G \quad H_1 : F \neq G$
 - Useful to detect **covariate drift** (data stability) from source to target datasets

- Univariate data:
 - Continuous data: KS statistics $D = \sup_{a \in \mathbb{R}} |F_n(a) - G_m(a)| \sim K$
 - KS-distance between empirical cumulative distributions
 - Discrete data: χ^2 statistics

 $$\chi^2 = \sum_{R_i > 0 \lor S_i > 0} \frac{(\sqrt{\frac{m}{n}}R_i - \sqrt{\frac{n}{m}}S_i)^2}{R_i + S_i} \sim \chi^2(df)$$

 where R_i (resp., S_i) is the number of observations in x_1, \ldots, x_n (resp., y_1, \ldots, y_m) which are equal to i, $df = |\{i \mid R_i > 0 \lor S_i > 0\}| - 1$
 - Other tests in the R package **twosamples**

- Multivariate data: see classifier 2-sample test and others in the R package **Ecume**

 See R script
Testing independence:

- **Pearson’s Chi-Square test** of independence
- X and Y discrete (finite) distributions
- $(x_1, y_1), \ldots, (x_n, y_n)$ bivariate observed dataset
- $H_0 : X \perp \perp Y \quad H_1 : X \not\perp \not\perp Y$
- Test statistic:
 \[
 \chi^2 = \sum_{i,j} \frac{(O_{i,j} - E_{i,j})^2}{E_{i,j}} = n \sum_{i,j} \frac{(O_{i,j}/n - p_{i,.}p_{.,j})^2}{p_{i,.}p_{.,j}} \sim \chi^2(df)
 \]
 where $O_{i,j}$ is the number of observations of value $X = i$ and $Y = j$, $E_{i,j} = np_{i,.}p_{.,j}$ where $p_{i,.} = \sum_j O_{i,j}/n$ and $p_{.,j} = \sum_i O_{i,j}/n$. $df = (n_x - 1)(n_y - 1)$ where n_x (resp., n_y) is the size of the support of X (resp., Y)
- Exact test when n is small: **Fisher’s exact test**
- Paired data (e.g., before and after taking a drug): **McNemar’s test**

See R script
The G-test and Mutual Information

- **G-test** of independence
- X and Y discrete (finite) distributions
- $(x_1, y_1), \ldots, (x_n, y_n)$ bivariate observed dataset
- $H_0 : X \perp \perp Y \quad H_1 : X \not\perp \perp Y$

Test statistics:

$$G = 2 \sum_{i,j} O_{i,j} \log \frac{O_{i,j}}{E_{i,j}} = 2 \sum_{i,j} O_{i,j} \log \frac{O_{i,j}}{np_{i,.}p_{.j}} \sim \chi^2(df)$$

where $O_{i,j}$ is the number of observations of value $X = i$ and $Y = j$, $E_{i,j} = np_{i,.}p_{.j}$ where $p_{i,.} = \sum_j O_{i,j}/n$ and $p_{.j} = \sum_i O_{i,j}/n$. $df = (n_x - 1)(n_y - 1)$ where n_x (resp., n_y) is the size of the support of X (resp., Y)

- Preferrable to Chi-Squared when numbers (O_{ij} or E_{ij}) are small, asymptotically equivalent
- $G = 2 \cdot n \cdot I(O, E)$ where $I(O, E)$ is the mutual information between O and E \[See Lesson 16\]

See R script
Other tests of independence

• \((x_1, y_1), \ldots, (x_n, y_n)\) bivariate observed dataset

• Permutation tests:
 ▶ reduces to comparing two datasets: \((x_1, y_1), \ldots, (x_n, y_n)\) and \((x_1, y_{\pi_1}), \ldots, (x_n, y_{\pi_n})\), where \(\pi_1, \ldots, \pi_n\) is a permutation of 1, \ldots, n

• Continuous \(X\) and \(Y\):
 ▶ discretize both \(X\) and \(Y\) and then apply independence tests for discrete r.v.’s, or
 ▶ test correlation (see later), or
 ▶ Hoeffding’s test, see R package independence

• Continuous \(X\) and discrete \(Y\):
 ▶ discretize \(X\) and then apply independence tests for discrete r.v.’s, or
 ▶ a direct approach Yang and Kim, or
 ▶ special case \(Y\) binary: \(X \perp \perp Y\) iff \(P(X|Y) = P(X)\) iff \(P(X|Y = 0) = P(X|Y = 1)\) [see slide on comparing two datasets]
Measures of association (from Lesson 16)

- **Association**: one variable provides information on the other
 - $X \perp Y$ independent, i.e., $P(X|Y) = P(X)$: zero information
 - $Y = f(X)$ deterministic association with f invertible: maximum information

- **Correlation**: the two variables show an increasing/decreasing trend
 - $X \perp Y$ implies $\text{Cov}(X, Y) = 0$
 - the converse is not always true

<table>
<thead>
<tr>
<th>Variable Y</th>
<th>Nominal</th>
<th>Ordinal</th>
<th>Continuous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal</td>
<td>ϕ or λ</td>
<td>Rank biserial</td>
<td>Point biserial</td>
</tr>
<tr>
<td>Ordinal</td>
<td>Rank biserial</td>
<td>τ_b or Spearman</td>
<td>τ_b or Spearman</td>
</tr>
<tr>
<td>Continuous</td>
<td>Point biserial</td>
<td>τ_b or Spearman</td>
<td>Pearson or Spearman</td>
</tr>
</tbody>
</table>

$\phi = \text{phi coefficient}, \ \lambda = \text{Goodman and Kruskal's lambda}, \ \tau_b = \text{Kendall's } \tau_b.$
Association between nominal variables: Pearson χ^2-based

- **ϕ coefficient** (or MCC, Matthews correlation coefficient)
 - For 2×2 contingency tables:
 \[
 \phi = \sqrt{\frac{\chi^2}{n}} \in [0, 1]
 \]

 [Exercise. Show $\phi = |r_{xy}|$]

- **Cramer’s V**
 - For contingency tables larger than 2×2:
 \[
 V = \sqrt{\frac{\chi^2}{n \cdot \min\{r-1, c-1\}}} \in [0, 1]
 \]

 where r and c are the number of rows and columns

- **Tschuprov’s T**
 - For contingency tables larger than 2×2:
 \[
 T = \sqrt{\frac{\chi^2}{n \cdot \sqrt{(r-1)(c-1)}}} \in [0, 1]
 \]

 where r and c are the number of rows and columns

 [sames as V if $r = c$]

See R script
Testing correlation: continuous data

- Population correlation:
 \[\rho = \frac{E[(X - \mu_X) \cdot (Y - \mu_Y)]}{\sigma_X \cdot \sigma_Y} \]

- Pearson's correlation coefficient:
 \[r = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) \cdot (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \cdot \sum_{i=1}^{n} (y_i - \bar{y})^2}} \]

- Assumption: joint distribution of \(X, Y \) is bivariate normal (or large sample)
- \((x_1, y_1), \ldots, (x_n, y_n)\) bivariate observed dataset
- \(H_0 : \rho = 0 \quad H_1 : \rho \neq 0 \)
- Test statistics:
 \[T = \frac{r \sqrt{n - 2}}{\sqrt{1 - r^2}} \sim t(n - 2) \]

- Recall that \(X \perp \perp Y \) implies \(\rho = 0 \): if \(H_0 \) can be rejected, then \(X \perp \perp Y \) can be rejected

See R script
Testing AUC-ROC

- Binary classifier score $s_\theta(w) \in [0, 1]$ where $s_\theta(w)$ estimate $\eta(w) = P_{\theta_{TRUE}}(C = 1|W = w)$
- ROC Curve
 - $TPR(p) = P(s_\theta(w) \geq p|C = 1)$ and $FPR(p) = P(s_\theta(w)|C = 0)$
 - ROC Curve is the scatter plot $TPR(p)$ over $FPR(p)$ for p ranging from 1 down to 0
 - AUC-ROC is the area below the curve
 - Linearly related to Somer’s D correlation index (a.k.a. Gini coefficient)

What does AUC-ROC estimate? Linearly related to Somer’s D correlation index (a.k.a. Gini coefficient) [See Lesson 16]
Testing AUC-ROC

- AUC is the probability of correct identification of the order between two instances:

\[AUC = P_{\theta_{\text{TRUE}}} (s_\theta(W_1) < s_\theta(W_2)| C_{W_1} = 0, C_{W_2} = 1) \]

where \((W_1, C_{W_1}) \sim f_{\theta_{\text{TRUE}}} \) and \((W_2, C_{W_2}) \sim f_{\theta_{\text{TRUE}}} \)

- \(s_\theta(W_1), \ldots, s_\theta(W_n) \sim F_{\theta_{\text{TRUE}}}|_{C=1}\) (scores of positives) and \(s_\theta(V_1), \ldots, s_\theta(V_m) \sim F_{\theta_{\text{TRUE}}}|_{C=0}\) (scores of negative)

\[
U = \sum_{i=1}^{n} \sum_{j=1}^{m} S(s_\theta(W_i), s_\theta(V_j))
\]

\[
S(X, Y) = \begin{cases}
1 & \text{if } X > Y \\
1/2 & \text{if } X = Y \\
0 & \text{if } X < Y
\end{cases}
\]

- AUC-ROC = \(U/(n \cdot m)\) is an estimator of AUC

- \(U\) statistics of the **Wilcoxon rank-sum test**

- Normal approximation, **DeLong’s algorithm**, bootstrap, **Brunner-Munzel tests** and confidence intervals

See R script