Master Program in Data Science and Business Informatics Statistics for Data Science
Lesson 35 - Testing independence/association, Multiple sample testing of the mean

Salvatore Ruggieri
Department of Computer Science
University of Pisa
salvatore.ruggieri@unipi.it

Testing independence/association: discrete data

- Pearson's Chi-Square test of independence
- X and Y discrete (finite) distributions
- $\left(x_{1}, y_{1}\right) \ldots,\left(x_{n}, y_{n}\right)$ bivariate observed dataset
- $H_{0}: X \Perp Y \quad H_{1}: X \not \Perp Y$
- Test statistic:

$$
\chi^{2}=\sum_{i, j} \frac{\left(O_{i, j}-E_{i, j}\right)^{2}}{E_{i, j}}=n \sum_{i, j} \frac{\left(O_{i, j} / n-p_{i, .} p_{., j}\right)^{2}}{p_{i, .} p_{., j}} \sim \chi^{2}(d f)
$$

where $O_{i, j}$ is the number of observations of value $X=i$ and $Y=j, E_{i, j}=n p_{i, .} p_{., j}$ where $p_{i, .}=\sum_{j} O_{i, j} / n$ and $p_{., j}=\sum_{i} O_{i, j} / n . d f=\left(n_{x}-1\right)\left(n_{y}-1\right)$ where n_{x} (resp., $\left.n_{y}\right)$ is the size of the support of X (resp., Y)

- Exact test when n is small: Fisher's exact test
- Paired data (e.g., before and after taking a drug): McNemar's test

Association between nominal variables: χ^{2}-based

- Association measures based on Pearson χ^{2}
- ϕ coefficient (or MCC, Matthews correlation coefficient)
\square For 2×2 contingency tables:

$$
\phi=\sqrt{\frac{\chi^{2}}{n}} \in[0,1]
$$

- Cramer's V
\square For contingency tables larger than 2×2 :

$$
V=\sqrt{\frac{\chi^{2}}{n \cdot \min \{r-1, c-1\}}} \in[0,1]
$$

where r and c are the number of rows and columns

- Tschuprov's T
\square For contingency tables larger than 2×2 :

$$
T=\sqrt{\frac{\chi^{2}}{n \cdot \sqrt{(r-1)(c-1)}}} \in[0,1]
$$

where r and c are the number of rows and columns
[Exercise. Show $\phi=\left|r_{x y}\right|$]

The G-test and Mutual Information

- G-test of independence
- X and Y discrete (finite) distributions
- $\left(x_{1}, y_{1}\right) \ldots,\left(x_{n}, y_{n}\right)$ bivariate observed dataset
- $H_{0}: X \Perp Y \quad H_{1}: X \not \Perp Y$
- Test statistic:

$$
G=2 \sum_{i, j} O_{i, j} \log \frac{O_{i, j}}{E_{i, j}}=2 \sum_{i, j} O_{i, j} \log \frac{O_{i, j}}{n p_{i, .} . P_{., j}} \sim \chi^{2}(d f)
$$

where $O_{i, j}$ is the number of observations of value $X=i$ and $Y=j, E_{i, j}=n p_{i, .} p_{., j}$ where $p_{i, .}=\sum_{j} O_{i, j} / n$ and $p_{., j}=\sum_{i} O_{i, j} / n . d f=\left(n_{x}-1\right)\left(n_{y}-1\right)$ where $n_{x}\left(\right.$ resp., $\left.n_{y}\right)$ is the size of the support of X (resp., Y)

- Preferrable to Chi-Squared when numbers ($O_{i j}$ or $E_{i j}$) are small, asymptotically equivalent
- $G=2 \cdot n \cdot I(O, E)$ where $I(O, E)$ is the mutual information between O and E [See Lesson 16] See \mathbf{R} script

Testing correlation: continuous data

- Population correlation:

$$
\rho=\frac{E\left[\left(X-\mu_{X}\right) \cdot\left(Y-\mu_{Y}\right)\right]}{\sigma_{X} \cdot \sigma_{Y}}
$$

- Pearson's correlation coefficient:

$$
r=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) \cdot\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \cdot \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}}
$$

- Assumption: joint distribution of X, Y is bivariate normal (or large sample)
- $\left(x_{1}, y_{1}\right) \ldots,\left(x_{n}, y_{n}\right)$ bivariate observed dataset
- $H_{0}: \rho=0 \quad H_{1}: \rho \neq 0$
- Test statistics:

$$
T=\frac{r \sqrt{n-2}}{\sqrt{1-r^{2}}} \sim t(n-2)
$$

Testing AUC-ROC

- Binary classifier score $s_{\theta}(w) \in[0,1]$ where $s_{\theta}(w)$ estimate $\eta(w)=P_{\theta_{\text {TRUE }}}(C=1 \mid W=w)$
- ROC Curve
- $\operatorname{TPR}(p)=P\left(s_{\theta}(w) \geq p \mid C=1\right)$ and $F P R(p)=P\left(s_{\theta}(w) \mid C=0\right)$
- ROC Curve is the scatter plot $\operatorname{TPR}(p)$ over $\operatorname{FPR}(p)$ for p ranging from 1 down to 0
- AUC-ROC is the area below the curve

What does AUC-ROC estimate?

- Linearly related to Somer's D correlation index (a.k.a. Gini coefficient)

Testing AUC-ROC

- AUC is the probability of correct identification of the order between two instances:

$$
A U C=P_{\theta_{\text {TRUE }}}\left(s_{\theta}(W 1)<s_{\theta}(W 2) \mid C_{W 1}=0, C_{W 2}=1\right)
$$

where $\left(W 1, C_{W 1}\right) \sim f_{\theta_{\text {TRUE }}}$ and $\left(W 2, C_{W 2}\right) \sim f_{\theta_{\text {TRUE }}}$

- $s_{\theta}\left(W_{1}\right), \ldots, s_{\theta}\left(W_{n}\right) \sim F_{\theta_{\text {TRUE }}} \mid c=1$ and $s_{\theta}\left(V_{1}\right), \ldots, s_{\theta}\left(V_{m}\right) \sim F_{\text {tTRUE }} \mid c=0$

$$
U=\sum_{i=1}^{n} \sum_{j=1}^{m} S\left(s_{\theta}\left(W_{i}\right), s_{\theta}\left(V_{j}\right)\right) \quad S(X, Y)= \begin{cases}1 & \text { if } X>Y \\ 1 / 2 & \text { if } X=Y \\ 0 & \text { if } X<Y\end{cases}
$$

- AUC-ROC $=U /(n \cdot m)$ is an estimator of AUC
- Related to $W=U+\frac{n(n+1)}{2}$, where W is the Wilcoxon rank-sum test statistics [See Lesson 34]
- Normal approximation, DeLong's algorithm or bootstrap for confidence interval estimation

See R script

Omnibus tests and post-hoc tests

- $H_{0}: \theta_{1}=\theta_{2}=\ldots=\theta_{k}[=0]$
- $H_{1}: \theta_{i} \neq \theta_{j}$ for some $i \neq j$
- Omnibus tests detect any of several possible differences
- Advantage: no need to pre-specify which treatments are to be compared and then no need to adjust for making multiple comparisons
- If H_{1} is rejected (test significant), a post-hoc test to find which $\theta_{i} \neq \theta_{j}$
- Everything to everything post-hoc compare all pairs
- One to everything post-hoc compare a new population to all the others
- We distinguish a few cases:
- Multiple linear regression (normal errors + homogeneity of variances, i.e., $U_{i} \sim N\left(0, \sigma^{2}\right)$):
- F-test + t-test
- Equality of means (normal distributions + homogeneity of variances):
\square ANOVA + Tukey/Dunnett
- Equality of means (general distributions):
\square Friedman + Nemenyi

F-test for multiple linear regression

- $\boldsymbol{Y}=\boldsymbol{X} \cdot \boldsymbol{\beta}+\boldsymbol{U}$, where $\boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{n}\right), \boldsymbol{U}=\left(U_{1}, \ldots, U_{n}\right)$, and $\boldsymbol{X}=\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right)$
- $\boldsymbol{\beta}^{T}=\left(\alpha, \beta_{1}, \ldots, \beta_{k}\right)$ and $\boldsymbol{x}_{i}=\left(1, x_{i}^{1}, \ldots, x_{i}^{k}\right)$
- Unexplained (residual) error SSE $=S(\boldsymbol{\beta})=\sum_{i=1}^{n}\left(y_{i}-\boldsymbol{x}_{i} \cdot \boldsymbol{\beta}\right)^{2}$
- Null model (or intercept-only model): $\boldsymbol{Y}=\mathbf{1} \cdot \alpha+\boldsymbol{U}$
- Total error SST $=S(\alpha)=\sum_{i=1}^{n}\left(y_{i}-\bar{y}_{n}\right)^{2}$
[residuals of the null model]
- Explained error SSR $=$ SST $-S S E=\sum_{i=1}^{n}\left(\bar{y}_{n}-\boldsymbol{x}_{i} \cdot \boldsymbol{\beta}\right)^{2}$
- Coefficient of determination $R^{2}=S S R / S S T=1-S S E / S S T$
- Is the model useful? Fraction of explained error
- Is the model statistically significant? [vs a specific β_{i} significant? See Lesson 29]
- $H_{0}: \beta_{1}=\ldots=\beta_{k}=0 \quad H_{1}: \beta_{i} \neq 0$ for all $i=1, \ldots, k$
- Test statistic: $F=\frac{S S R}{S S E} \frac{n-k-1}{k} \sim F(k, n-k-1)$

> See R script

Equality of means: ANOVA

- $H_{0}: \mu_{1}=\mu_{2}=\ldots=\mu_{k}$
[generalization of two sample t-test]
- $H_{1}: \mu_{1} \neq \mu_{2}$ for some $i \neq j$
- datasets $y_{1}^{j}, \ldots, y_{n_{j}}^{j}$ for $j=1, \ldots, k$
- Assumption: normality (Shapiro-Wilk test) + homogeneity of variances (Bartlett test)
- responses of $k-1$ treatments and 1 control group
[one way ANOVA]
- accuracies of k classifiers over $n_{j}=n$ datasets
- Linear regression model over dummy encoded j :

$$
Y=\alpha+\beta_{1} x_{1}+\ldots+\beta_{k-1} x_{k-1}
$$

- $\alpha=\mu_{k}$ is the mean of the reference group $(j=k)$
- $\beta_{j}=\mu_{j}-\mu_{k}$
- in $\mathrm{R}: \operatorname{lm}$ (Y~Group) where Group contains the labels of $j=1, \ldots, k$
- F-test (over linear regression): $H_{0}: \beta_{1}=\ldots=\beta_{k}=0$, i.e., $\mu_{j}=\mu_{k}$ for $j=1, \ldots, k$
- Tukey HSD (Honest Significant Differences) is an all-pairs post-hoc test
- Dunnet test is a one-to-everything test

> See R script

Non-parametric test of equality of means: Friedman

- $H_{0}: \mu_{1}=\mu_{2}=\ldots=\mu_{k}$
- $H_{1}: \mu_{1} \neq \mu_{2}$ for some $i \neq j$
- datasets $x_{1}^{j}, \ldots, x_{n}^{j}$ for $j=1, \ldots, k \quad$ [paired observations/repeated measures]
- accuracies of k classifiers over n datasets
- Let r_{i}^{j} be the rank of x_{i}^{j} in $x_{i}^{1}, \ldots, x_{i}^{k}$
- e.g., $j^{\text {th }}$ classifier w.r.t. $i^{\text {th }}$ dataset
- Average rank of classifier: $R_{j}=\frac{1}{n} \sum_{i=1}^{n} r_{i}^{j}$
- Under H_{0}, we have $R_{1}=\ldots=R_{k}$ and, for n and k large:

$$
\chi_{F}^{2}=\frac{12 n}{k(k+1)}\left(\sum_{j=1}^{k} R_{j}^{2}-\frac{k(k+1)^{2}}{4}\right) \sim \chi^{2}(k)
$$

- Nemenyi test is an all-pairs post-hoc test
- Bonferroni correction is a one-to-everything test
- For unpaired observations, use Kruskal-Wallis test instead of Friedman test

Optional reference

- On confidence intervals and statistical tests (with R code)

Ryles Hollander, Douglas A. Wolfe, and Eric Chicken (2014)
Nonparametric Statistical Methods.
3rd edition, John Wiley \& Sons, Inc.

