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The multiple comparisons problem
• Single test H0 : θ = 0, with significance level α = 0.05 [false positive rate]

▶ test is called significant when we reject H0

▶ α is Type I error, probability of rejecting H0 when it is true

• Multiple tests, say m = 20
▶ E.g., H i

0 : θi = 0 for i = 1, . . . ,m where θi is the expectation of a subpopulation

• What is the probability of rejecting at least one H i
0 when all of them are true?

▶ For independent tests: P(∪m
i=1{pi ≤ α}) = 1− P(∩m

i=1{pi > α}) = 1− (1− α)m

and then 1− (0.95)20 ≈ 0.64
▶ For dependent tests: P(∪m

i=1{pi ≤ α}) ≤
∑

i P({pi ≤ α}) = m · α, and then ≤ 20 · 0.05 = 1

Family-wise error rate (FWER)

The FWER is the probability of making at least one Type I error in a
family of n tests. If the tests are independent:

αFWER = 1− (1− α)m

If the test are dependent: αFWER ≤ m · α
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Multiple comparisons: corrections

Objective: achieve significant tests (p ≤ α′) such that αFWER ≤ α

• Bonferroni correction (most conservative one):

▶ scale significance level α′ = α/m [invert α = m · α′]
▶ Notice: p ≤ α′ is equivalent to scale p-values and test p ·m ≤ α

Thus αFWER ≤ m · α′ = α

• Šidák correction (exact for independent tests):

▶ scale significance level α′ = 1− (1− α)1/m [invert α = 1− (1− α′)m]
▶ Notice: p ≤ α′ is equivalent to scale p-values and test 1− (1− p)m ≤ α

Thus αFWER = 1− (1− α′)m = α

See R script

3 / 9



False Discovery Rate and q-values

• False Positive Rate: FPR = FP/(FP + TN)
▶ Corrections control for FPR since FWER = P(FP > 0|H i

0 i = 1, . . . ,m)

• Drawback: acting on α increases FNR = FN/(FN + TP)

• False Discovery Rate: FDR = FP/(FP + TP) [Korthauer et al, 2019]
▶ FDR = 0.05 means 5% of rejected H0’s are actually true

• q-value is P(H0|T ≥ t) [vs. p = P(T ≥ t|H0)]
▶ FDR can be controlled by requiring q ≤ threshold

See R script
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Omnibus tests and post-hoc tests

• H0 : θ1 = θ2 = . . . = θk [= 0]

• H1 : θi ̸= θj for some i ̸= j
• Omnibus tests detect any of several possible differences

▶ Advantage: no need to pre-specify which treatments are to be compared . . .
. . . and then no need to adjust for making multiple comparisons

• If H1 is rejected (test significant), a post-hoc test to find which θi ̸= θj
▶ Everything to everything post-hoc compare all pairs
▶ One to everything post-hoc compare a new population to all the others

• We distinguish a few cases:
▶ Multiple linear regression (normal errors + homogeneity of variances, i.e., Ui ∼ N(0, σ2)):

□ F -test + t-test
▶ Equality of means (normal distributions + homogeneity of variances):

□ ANOVA + Tukey/Dunnett
▶ Equality of means (general distributions):

□ Friedman + Nemenyi
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F -test for multiple linear regression

• Y = X · β + U , where Y = (Y1, . . . ,Yn), U = (U1, . . . ,Un), and X = (x1, . . . , xn)
▶ βT = (α, β1, . . . , βk) and x i = (1, x1i , . . . , x

k
i )

▶ Unexplained (residual) error SSE = S(β) =
∑n

i=1(yi − x i · β)2

• Null model (or intercept-only model): Y = 1 · α+ U
▶ Total error SST = S(α) =

∑n
i=1(yi − ȳn)

2 [residuals of the null model]

• Explained error SSR = SST − SSE =
∑n

i=1(ȳn − x i · β)2

• Coefficient of determination R2 = SSR/SST = 1− SSE/SST [See Lesson 20]
▶ Is the model useful? Fraction of explained error

• Is the model statistically significant? [vs a specific βi significant? See Lesson 29]

• H0 : β1 = . . . = βk = 0 H1 : βi ̸= 0 for all i = 1, . . . , k

• Test statistic: F = SSR
SSE

n−k−1
k ∼ F (k, n − k − 1)

See R script
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Equality of means: ANOVA

• H0 : µ1 = µ2 = . . . = µk [generalization of two sample t-test]
• H1 : µ1 ̸= µ2 for some i ̸= j
• datasets y j1, . . . , y

j
nj for j = 1, . . . , k

▶ Assumption: normality (Shapiro-Wilk test) + homogeneity of variances (Bartlett test)
▶ responses of k − 1 treatments and 1 control group [one way ANOVA]
▶ accuracies of k classifiers over nj = n datasets [repeated measures/two way ANOVA]

• Linear regression model over dummy encoded j :

Y = α+ β1x1 + . . .+ βk−1xk−1

▶ α = µk is the mean of the reference group (j = k)
▶ βj = µj − µk

▶ in R: lm(Y∼Group) where Group contains the labels of j = 1, . . . , k
• F -test (over linear regression): H0 : β1 = . . . = βk = 0, i.e., µj = µk for j = 1, . . . , k
• Tukey HSD (Honest Significant Differences) is an all-pairs post-hoc test
• Dunnet test is a one-to-everything test

See R script
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Non-parametric test of equality of means: Friedman

• H0 : µ1 = µ2 = . . . = µk

• H1 : µ1 ̸= µ2 for some i ̸= j
• datasets x j1, . . . , x

j
n for j = 1, . . . , k [paired observations/repeated measures]

▶ accuracies of k classifiers over n datasets
• Let r ji be the rank of x ji in x1i , . . . , x

k
i

▶ e.g., j th classifier w.r.t. i th dataset
• Average rank of classifier: Rj =

1
n

∑n
i=1 r

j
i

• Under H0, we have R1 = . . . = Rk and, for n and k large:

χ2
F =

12n

k(k + 1)

 k∑
j=1

R2
j − k(k + 1)2

4

 ∼ χ2(k)

• Nemenyi test is an all-pairs post-hoc test
• Bonferroni correction is a one-to-everything test
• For unpaired observations, use Kruskal-Wallis test instead of Friedman test

See R script
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Optional reference

• On confidence intervals and statistical tests (with R code)

Myles Hollander, Douglas A. Wolfe, and Eric Chicken (2014)

Nonparametric Statistical Methods.

3rd edition, John Wiley & Sons, Inc.

• On False Discovery Rate

Keegan Korthauer, Patrick K. Kimes, Claire Duvallet, Alejandro Reyes, Ayshwarya Subramanian,
Mingxiang Teng, Chinmay Shukla, Eric J. Alm, and Stephanie C. Hicks (2019)

A practical guide to methods controlling false discoveries in computational biology.

Genome Biology 20, article 118
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