Statistics for Data Science
Lesson 21 - Non-linear, and multiple linear regression

Salvatore Ruggieri

Department of Computer Science
University of Pisa, Italy
salvatore.ruggieri@unipi.it
Simple linear regression model

Simple linear regression model. In a *simple linear regression model* for a bivariate dataset \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\), we assume that \(x_1, x_2, \ldots, x_n\) are nonrandom and that \(y_1, y_2, \ldots, y_n\) are realizations of random variables \(Y_1, Y_2, \ldots, Y_n\) satisfying

\[Y_i = \alpha + \beta x_i + U_i \quad \text{for } i = 1, 2, \ldots, n,\]

where \(U_1, \ldots, U_n\) are *independent* random variables with \(E[U_i] = 0\) and \(\text{Var}(U_i) = \sigma^2\).

- **Regression line:** \(y = \alpha + \beta x\) with *intercept* \(\alpha\) and *slope* \(\beta\)
- **Least Square Estimators:** \(\hat{\alpha}\) and \(\hat{\beta}\) and \(\hat{\sigma}^2\)
- **Unbiasedness:** \(E[\hat{\alpha}] = \alpha\) and \(E[\hat{\beta}] = \beta\) and \(E[\hat{\sigma}^2] = \sigma^2\)
- **Standard errors** (estimates of \(\sqrt{\text{Var}(\hat{\alpha})}\) and \(\sqrt{\text{Var}(\hat{\beta})}\)):

\[\text{se}(\hat{\alpha}) = \hat{\sigma} \sqrt{\left(\frac{1}{n} + \frac{\bar{x}_n^2}{SXX} \right)} \quad \text{se}(\hat{\beta}) = \frac{\hat{\sigma}}{\sqrt{SXX}}\]
Standard error of fitted values (prediction ± standard error)

- For a given \(x_0 \), the estimator \(\hat{Y} = \hat{\alpha} + \hat{\beta}x_0 \) has expectation
 \[
 E[\hat{Y}] = E[\hat{\alpha}] + E[\hat{\beta}]x_0 = \alpha + \beta x_0
 \]

- Hence, \(\hat{Y} \) is unbiased, and \(\hat{y} = \hat{\alpha} + \hat{\beta}x_0 \) is the best estimate for the fitted value at \(x_0 \)

- Variance of \(\hat{Y} \) is:
 \[
 \text{Var}(\hat{Y}) = \sigma^2 \left(\frac{1}{n} + \frac{(\bar{x}_n - x_0)^2}{SXX} \right)
 \]

- The standard error of the fitted value is then the estimate:
 \[
 \text{se}(\hat{y}) = \hat{\sigma} \sqrt{\left(\frac{1}{n} + \frac{(\bar{x}_n - x_0)^2}{SXX} \right)}
 \]

where
\[
SXX = \sum_{1}^{n} (x_i - \bar{x}_n)^2 \\
\hat{\sigma}^2 = \frac{1}{n - 2} \sum_{1}^{n} (y_i - \hat{\alpha} - \hat{\beta}x_i)^2
\]

- Prediction uncertainty at \(x_0 \) is reported as \(\hat{y} \pm \text{se}(\hat{y}) \)

See R script
Weighted Least Squares and simple polynomial regression

- Weighted Simple Regression

\[S(\alpha, \beta) = \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2 w_i \]

- \(w_i \) is the weight (or importance) of observation \((x_i, y_i)\)
- For natural number weights, it is the same as replicating instances

- Polynomial Simple Regression

\[S(\alpha, \beta) = \sum_{i=1}^{n} (y_i - \alpha - \beta_1 x_i - \beta_2 x_i^2 - \ldots - \beta_k x_i^k)^2 \]

- \(Y_i = \alpha + \beta_1 x_i + \beta_2 x_i^2 + \ldots + \beta_k x_i^k + U_i \) for \(i = 1, 2, \ldots, n \)
- May suffer from collinearity (see later in this slides)

See R script
Non-linear simple regression and transformably linear functions

- \(Y_i = f(\alpha, \beta, x_i) + U_i \) for \(i = 1, 2, \ldots, n \) for a non-linear function \(f() \)

\[
S(\alpha, \beta) = \sum_{i=1}^{n} (y_i - f(\alpha, \beta, x_i))^2
\]

- \(\arg\min_{\alpha, \beta} S(\alpha, \beta) \) may be without a closed form
 - use numeric search of the minimum (which may fail to find it!), e.g., gradient descent

- Some \(f() \) can be favourably transformed, e.g., \(f(\alpha, \beta, x_i) = \alpha x_i^\beta \) (recall Power law, Zipf’s)

- Solve \(\log Y_i = \log \alpha + \beta \log x_i + U_i \) \([\text{Linearization}]\)

- Let \(\hat{\alpha} \) and \(\hat{\beta} \) be the LSE estimators. By exponentiation:

\[
Y_i = \hat{\alpha} x_i^{\hat{\beta}} e^{U_i}
\]

where the error term is a multiplicative factor

See R script
Multiple linear regression

• Multivariate dataset of observations:

\[(x^1_1, x^2_1, \ldots, x^k_1, y_1), \ldots, (x^1_n, x^2_n, \ldots, x^k_n, y_n)\]

• \(Y_i = \alpha + \beta_1 x^1_i + \ldots + \beta_k x^k_i + U_i\)

• In vector terms:

 \[\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} 1, x^1_1, x^2_1, \ldots, x^k_1 \\ 1, x^1_2, x^2_2, \ldots, x^k_2 \\ \vdots \\ 1, x^1_n, x^2_n, \ldots, x^k_n \end{bmatrix} \begin{bmatrix} \alpha \\ \beta_1 \\ \vdots \\ \beta_k \end{bmatrix} + \begin{bmatrix} U_1 \\ U_2 \\ \vdots \\ U_n \end{bmatrix}\]
Multiple linear regression

- Model: \(Y = X \cdot \beta^T + U \)
- Ordinary Least Square Estimation (OLS):

\[
S(\beta) = \sum_{i=1}^{n}(y_i - x_i \cdot \beta^T)^2 = \|y - X \cdot \beta^T\|^2 \\
\hat{\beta} = \arg\min_{\beta} S(\beta) = (X^T \cdot X)^{-1} \cdot X^T \cdot y
\]

where \(\|(v_1, \ldots, v_n)\| = \sqrt{\sum_{i=1}^{n} v_i^2} \) is the Euclidean norm, and:

\[
y - X \cdot \beta^T = \begin{pmatrix}
y_1 \\
y_2 \\
\vdots \\
y_n \\
\end{pmatrix} - \begin{pmatrix}
1, x_1^1, x_1^2, \ldots, x_1^k \\
1, x_2^1, x_2^2, \ldots, x_2^k \\
\vdots \\
1, x_n^1, x_n^2, \ldots, x_n^k \\
\end{pmatrix} \begin{pmatrix}
\alpha \\
\beta_1 \\
\vdots \\
\beta_k \\
\end{pmatrix}
\]

- Meaning of \(\beta_i \): change of \(Y \) due to a unit change in \(x_i \) all the \(x_j \) with \(j \neq i \) unchanged!
- It is a Minimum Variance linear Unbiased Estimator \([\text{Gauss-Markov Thm.}]\)

See R script
Multivariate multiple linear regression

- The multivariate linear model accommodates two or more dependent variables

\[\mathbf{Y} = \mathbf{X} \mathbf{\beta}^T + \mathbf{U} \]

- \(\mathbf{Y} \) is \(n \times m \): \(n \) observations, \(m \) dependent variables
- \(\mathbf{X} \) is \(n \times (k+1) \): \(n \) observations, \(k \) independent variables +1 constants
- \(\mathbf{\beta}^T \) is \((k+1) \times m \): parameters for each of the \(m \) dependent variables
- \(\mathbf{U} \) is \(n \times m \): \(n \) observations, \(m \) error terms

- It is **not** just a collection of \(m \) multiple linear regressions
- Errors in columns of \(\mathbf{U} \), e.g., \(U^1_1, \ldots, U^1_n \), are independent, as in a single multiple linear regression
- Errors in rows (dependent variables) are allowed to be correlated.
 - E.g., errors of plasma level (e.g., \(U^1_1 \)) and amitriptyline (e.g., \(U^2_1 \)) due to usage of drugs
 - Hence, coefficients from the models for the various dependent variables covary!

See R script
Other variants and generalizations

- **Heteroscedastic linear models**
 - Relax the assumption of equal variances $\text{Var}(U_i) = \sigma^2$

- **Generalized least squares**
 - U_1, \ldots, U_n not necessarily independent

- **Hierarchical linear models**
 - Nested or cluster organization (e.g., Children within classrooms within schools)
 - See this intro in R

- Generalized linear models
 - We’ll see next at Logistic Regression

- **Tobit regression**
 - Censored dependent variable, e.g., income cannot be negative

- **Truncated regression model**
 - Dependent variable not available/sampled, e.g., income above a poverty threshold

- **Quantile regression**
 - Estimate of the median (or other quantiles) instead of the mean, as in regression
Optional references

5th edition McGraw-Hill