Master Program in *Data Science and Business Informatics*

Statistics for Data Science

Lesson 21 - Multiple, non-linear, and logistic regression

Salvatore Ruggieri

Department of Computer Science
University of Pisa, Italy
salvatore.ruggieri@unipi.it
Simple linear regression model

Simple linear regression model. In a simple linear regression model for a bivariate dataset \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\), we assume that \(x_1, x_2, \ldots, x_n\) are nonrandom and that \(y_1, y_2, \ldots, y_n\) are realizations of random variables \(Y_1, Y_2, \ldots, Y_n\) satisfying

\[
Y_i = \alpha + \beta x_i + U_i \quad \text{for } i = 1, 2, \ldots, n,
\]

where \(U_1, \ldots, U_n\) are independent random variables with \(E[U_i] = 0\) and \(\text{Var}(U_i) = \sigma^2\).

- **Regression line:** \(y = \alpha + \beta x\) with intercept \(\alpha\) and slope \(\beta\)
- **Least Square Estimators:** \(\hat{\alpha}\) and \(\hat{\beta}\) and \(\hat{\sigma}^2\)
- **Unbiasedness:** \(E[\hat{\alpha}] = \alpha\) and \(E[\hat{\beta}] = \beta\) and \(E[\hat{\sigma}^2] = \sigma^2\)
- **Standard errors** (estimates of \(\sqrt{\text{Var}(\hat{\alpha})}\) and \(\sqrt{\text{Var}(\hat{\beta})}\)):

\[
\text{se}(\hat{\alpha}) = \hat{\sigma} \sqrt{\left(\frac{1}{n} + \frac{\bar{x}_n^2}{SXX}\right)} \quad \text{se}(\hat{\beta}) = \frac{\hat{\sigma}}{\sqrt{SXX}}
\]
Standard error of fitted values (prediction ± standard error)

- For a given x_0, the the estimator $\hat{Y} = \hat{\alpha} + \hat{\beta}x_0$ has expectation
 \[E[\hat{Y}] = E[\hat{\alpha}] + E[\hat{\beta}]x_0 = \alpha + \beta x_0 \]

- Hence, \hat{Y} is unbiased, and $\hat{y} = \hat{\alpha} + \hat{\beta}x_0$ is the best estimate for the fitted value at x_0

- Variance of \hat{Y} is:
 \[\text{Var}(\hat{Y}) = \sigma^2 \left(\frac{1}{n} + \frac{(\bar{x}_n - x_0)^2}{SXX} \right) \]
 [See sdsln.pdf Chpt. 2]

- The standard error of the fitted value is then the estimate:
 \[\text{se}(\hat{y}) = \hat{\sigma} \sqrt{\left(\frac{1}{n} + \frac{(\bar{x}_n - x_0)^2}{SXX} \right)} \]
 where
 \[SXX = \sum_{i=1}^{n} (x_i - \bar{x}_n)^2 \]
 \[\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^{n} (y_i - \hat{\alpha} - \hat{\beta}x_i)^2 \]

- Prediction uncertainty at x_0 is reported as $\hat{y} \pm \text{se}(\hat{y})$

See R script
Weighted Least Squares and simple polynomial regression

- Weighted Simple Regression

\[S(\alpha, \beta) = \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2 w_i \]

- \(w_i \) is the weight (or importance) of observation \((x_i, y_i)\)
- For natural number weights, it is the same as replicating instances

- Polynomial Simple Regression

\[S(\alpha, \beta) = \sum_{i=1}^{n} (y_i - \alpha - \beta_1 x_i - \beta_2 x_i^2 - \ldots - \beta_k x_i^k)^2 \]

- \(Y_i = \alpha + \beta_1 x_i + \beta_2 x_i^2 + \ldots + \beta_k x_i^k + U_i \) for \(i = 1, 2, \ldots, n \)
- May suffer from collinearity (see later in this slides)

See R script
Non-linear simple regression and transformably linear functions

- \(Y_i = f(\alpha, \beta, x_i) + U_i \) for \(i = 1, 2, \ldots, n \) for a non-linear function \(f() \)

\[
S(\alpha, \beta) = \sum_{i=1}^{n} (y_i - f(\alpha, \beta, x_i))^2
\]

- \(\arg \min_{\alpha, \beta} S(\alpha, \beta) \) may be without a closed form
 - use numeric search of the minimum (which may fail to find it!), e.g., gradient descent

- Some \(f() \) can be favourably transformed, e.g., \(f(\alpha, \beta, x_i) = \alpha x_i^\beta \) (recall Power law, Zipf’s)

- Solve \(\log Y_i = \log \alpha + \beta \log x_i + U_i \) \[\text{[Linearization]}\]

- Let \(\hat{\alpha} \) and \(\hat{\beta} \) be the LSE estimators. By exponentiation:

\[
Y_i = \hat{\alpha} x_i^{\hat{\beta}} e^{U_i}
\]

where the error term is a multiplicative factor

See R script
Multiple linear regression

- Multivariate dataset of observations:
 \[(x_1^1, x_1^2, \ldots, x_k^k, y_1), \ldots, (x_n^1, x_n^2, \ldots, x_n^k, y_n)\]

- \(Y_i = \alpha + \beta_1 x_1^i + \ldots + \beta_k x_k^i + U_i\)

- In vector terms:
 \[\begin{align*}
 \mathbf{Y} & = \mathbf{x} \cdot \mathbf{\beta}^T + \mathbf{U}, \text{ where } \mathbf{\beta} = (\alpha, \beta_1, \ldots, \beta_k) \text{ and } \mathbf{x}_i = (1, x_1^i, \ldots, x_k^i) \text{ the } i^{th} \text{ observation} \\
 \mathbf{Y} & = \mathbf{X} \cdot \mathbf{\beta}^T + \mathbf{U}, \text{ where:}
 \begin{pmatrix}
 Y_1 \\
 Y_2 \\
 \vdots \\
 Y_n
 \end{pmatrix} = \begin{pmatrix}
 1, x_1^1, x_1^2, \ldots, x_1^k \\
 1, x_2^1, x_2^2, \ldots, x_2^k \\
 \vdots \\
 1, x_n^1, x_n^2, \ldots, x_n^k
 \end{pmatrix} \begin{pmatrix}
 \alpha \\
 \beta_1 \\
 \vdots \\
 \beta_k
 \end{pmatrix} + \begin{pmatrix}
 U_1 \\
 U_2 \\
 \vdots \\
 U_n
 \end{pmatrix}
 \end{align*}\]
Multiple linear regression

- Model: $Y = X \cdot \beta^T + U$

- Ordinary Least Square Estimation (OLS):

$$S(\beta) = \sum_{i=1}^{n} (y_i - x_i \cdot \beta^T)^2 = \|y - X \cdot \beta^T\|^2$$

$$\hat{\beta} = \text{argmin}_\beta S(\beta) = (X^T \cdot X)^{-1} \cdot X^T \cdot y$$

where $\|(v_1, \ldots, v_n)\| = \sqrt{\sum_{i=1}^{n} v_i^2}$ is the Euclidian norm, and:

$$y - X \cdot \beta^T = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} - \begin{pmatrix} 1, x_1^1, x_1^2, \ldots, x_1^k \\ 1, x_2^1, x_2^2, \ldots, x_2^k \\ \vdots \\ 1, x_n^1, x_n^2, \ldots, x_n^k \end{pmatrix} \begin{pmatrix} \alpha \\ \beta_1 \\ \vdots \\ \beta_k \end{pmatrix}$$

- Meaning of β_i: change of Y due to a unit change in x_i all the x_j with $j \neq i$ unchanged!

- It is a Minimum Variance linear Unbiased Estimator \[\text{Gauss-Markov Thm.}\]

See R script
Multivariate multiple linear regression

- The multivariate linear model accommodates two or more dependent variables

\[\mathbf{Y} = \mathbf{X} \mathbf{\beta}^T + \mathbf{U} \]

- \(\mathbf{Y} \) is \(n \times m \): \(n \) observations, \(m \) dependent variables
- \(\mathbf{X} \) is \(n \times (k + 1) \): \(n \) observations, \(k \) independent variables +1 constants
- \(\mathbf{\beta}^T \) is \((k + 1) \times m \): parameters for each of the \(m \) dependent variables
- \(\mathbf{U} \) is \(n \times m \): \(n \) observations, \(m \) error terms

- It is not just a collection of \(m \) multiple linear regressions
- Errors in rows of \(\mathbf{U} \), e.g., \(U_1^1, \ldots, U_n^1 \), are independent, as in a single multiple linear regression
- Errors in columns (dependent variables) are allowed to be correlated.
 - E.g., errors of plasma level (e.g., \(U_1^1 \)) and amitriptyline (e.g., \(U_1^2 \)) due to usage of drugs
 - Hence, coefficients from the models for the various dependent variables covary!

See R script
Other variants and generalizations

- **Heteroscedastic linear models**
 - Relax the assumption of equal variances $\text{Var}(U_i) = \sigma^2$

- **Generalized least squares**
 - U_1, \ldots, U_n not necessarily independent

- **Hierarchical linear models**
 - Nested or cluster organization (e.g., Children within classrooms within schools)
 - See *this intro in R*

- Generalized linear models
 - We’ll see next at Logistic Regression

- **Tobit regression**
 - Censored dependent variable, e.g., income cannot be negative

- **Truncated regression model**
 - Dependent variable not available/sampled, e.g., income above a poverty threshold

- **Quantile regression**
 - Estimate of the median (or other quantiles) instead of the mean, as in regression