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Bivariate dataset

® Consider a bivariate dataset
(X17y1)7 M (Xna.yn)

® |t can be visualized in a scatter plot
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® This suggests a relation Hardness = « + - Density + random fluctuation
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Simple linear regression model

SIMPLE LINEAR REGRESSION MODEL. In a simple linear regression

model for a bivariate dataset (x1,91).(T2,92)s .-, (Tn,Yn), We as-
sume that x1,2s,...,2, are nonrandom and that yi,ys,...,y, are
realizations of random variables Y7, Ys, ..., Y, satisfying

Yi=a+px; +U; fori=1,2,...,n,

where Uy, ..., U,, are independent random variables with E[U;] = 0

and Var(U;) = 2.

® Regression line: y = a4+ Bx with intercept « and slope (3

® x is the explanatory (or independent) variable, and y the response (or dependent) variable

® Independence of Uy, ..., U, implies independence of Yi,..., Y}, [propagation of ind.]
» But Y;'s are not identically distributes, as E[Y;] = a + Bx;

® Also, notice the assumption Var(Y;) = Var(U;) = o2 [homoscedasticity]
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Estimation of parameters

® How to estimate v and 37 MLE requires to know the distribution of the U;'s

The point (xi, i) N T NThe regression
.

liney =ax =7

I T 1
T;

® y; —«a — f(x; is called a residual (or the error), and it is a realization of U;
» recall that E[U;] = 0 and Var(U;) = E[U?] = o2
® The method of Least Squares prescribes to minimize the sum of squares of residuals:

A, B = inS(a, here S( i — o — Bx;
a, 3 argrlll[? (o, B) where S(a, 5) = Z(y o — Bx;)?

S(a, B) also called Sum of Squares of Errors (SSE) or Resndual Sum of Squares (RSS)
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Least Squares Estimates

S(a, B) = _Z( i —a — Bx;)?

® Partial derivatives:

dd 22 — o — [x;) S(aﬂ 22 —a — BXi)x;
i=1

3

® Fqual to 0 for:
n n n
SR ST SURNIES JRRT) I pi
i=1 i=1 i=1 i=1 i=1

and solving, we get:

A_ o A A na i xiyi — (i xi) (i vi)
a = Yp BXn 5 — ”27:1 Xi2 — (27:1 X,')2

= & + [(x; are called the fitted values 5/14
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Ordinary Least Squares (OLS) Estimates
_ Xy xivi = (0 i) (i, i)

n 27:1 Xi2 - (27:1 x;)?

e Equivalent form of /3 [prove it!]

where:
> SXX = S0 (x — )2
> (xi—=x)-(vi—y)
\/Zle(xr'*?)zz,-":l(yiﬂ'/)z

> 5 = \/ﬁ S (xi — X,)? is the sample standard deviations of x;'s

>y = is the Pearson'’s correlation coefficient

> 5, = \/ﬁ S0 (vi — ¥a)? is the sample standard deviations of y;'s

e The line y = & + (3x always passes through the center of gravity (Xn, ¥n)
» Since & = y, — (%, we have & + 3%, = ¥ — A%y + ARy = Vi
See R script
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Why 'regression’ ?

So, why is it called 'regression’ anyway?
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“See Francis Galton concluded that as heights of the parents deviated from the average

height, [...] the heights of the children regressed to the average height of an adult.”
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Unbiasedness of estimators:

® Consider the least square estimators: _

221 (% = %a)(Yi = Yi)

- Yn - /BXn /8 = SXX
where SXX = 37(x; — %,)2. Since 3.7(x; — X,) = O,we can rewrite 3 as:
f o 2106 = %)Y = 20106 — %) Yo _ 210X — %)Y (1)
SXX SXX
® We have:
Elf] = 2% — %) E[Yi] _ 327(xi = Xn)(a+Bxi) _ BI1(xi — Xn)xi _
SXX SXX SXX

where the last step follows since Y 7(xj — Xn)xi = Y7 (Xi — Xn)xi — >_1(xi — Xn)Xx = SXX.

® Moreover: Z (x )2 ( ) Z ( ) )
~ 1 — Xn Var Y 2 1\ Xi — Xn g
Var(5) = SXX? SXX2  SXX
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Unbiasedness of estimators: &

® (Consider the least square estimators:

5 ila—%)(Yi— V)

&= Yo = B SXX
® \We have:
_ A 1
Ela - EYn__nE = - EYi__n
A = EV = %E = L3 Elv] -5
1« _ _ _
= D (a+Bx) —Ff = a+ T — 5B =0
i=1
® Moreover:

. _ R _ oA 1 X2
Var(&) = Var(Yy — %) = Var(Vy) + X2 Var(B) — 25 Cov(Ya, ) = 0*( + £5)

where Cov( \7,,,3) =0 [prove it or see sdsIn.pdf Chpt. 2]
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An estimator for 02, and standard errors

* Var(&) and Var(j3) use o2, which is unknown
® We cannot use ﬁ S1(Yi — Yn)? as an estimator of 02, because E[Y] is not constant

e An unbiased estimate of o2 is:

R 1 . A
6% = > (i — & — Bxi)?
1

n—2

o is called the residual standard error
® The standard errors of the coefficient estimators are defined as the estimates of the
standard deviations:

1 R o B
se(@) =0\ (5 + 5xx) =) = Joxx
See R script
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LSE: Relation with MLE

Yi=a+pxi+ U

® In case U; ~ N(0,0?), we have Y; ~ N(a + Bx;,02)
® | og-likelihood is

1(yi—a—Bx

o, 8) = Y0y log (e (7o) ) = “nlog (0v2R) — 5 Y0 — o — Bx)?

® |t turns out that arg max, g {(a, f) = &, B

[same estimators as LSE]
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Total variability = explained variability + unexplained variability

® Total variability in the data. Sum of Squares Total (SST):

SST = Z(yi - )_/n)2
1

Variability explained by regression. Sum of Squares of Regression (SSR):

SSR=> (&+ Bxi — 7a)?
1

Unexplained variability explained. Sum of Squares of Squares of Errors (SSE):

SSE = (yi — & — Bx;)?
1

It turns out: [Prove it!]

SST = SSR + SSE
1 — SSE/SST (or SSR/SST) is the fraction of explained variability over total variability
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Residuals and R?

® Residual standard error vs Root Mean Squared Error (RMSE):

n n

1 A 1 A
2i—a=px)P  RMSE= =3 (yi—da-—Bx)

n—2
1 1

Q>
Il

both measure the variability we cannot explain with the regression model
e Compare 52 to the variability of data:

. 1 < _
6y =——5> (vi— )
1

n—1

through the adjusted R?:

(o}
N

adjR> =1 —

>

<N

all variability explained)

—

® adjR? ranges from 0 (no variability explained) to 1
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Residuals and R?

® When taking un-adjusted variances::

1o R 1
A2 oA 32 A2 T L o )\2
g —EE (vi — & — fx) g, = n El (Yi = ¥n)

1

we define the coefficient of determination R?> = 1 — 82/&}2,
® Alternative definition based on variance of fitted: R? = 6}%/“5 where
1 ¢ 1
83 = ;Z(a+ﬁx,—yn)2 and §, = ;Z(&+5Xf) =&+ R = Vn
1 1
and then A)%, =SSR/n
® For simple (one independent r.v.) linear regression: [Prove it!]
R — . — ST (i — V) - (& + Bxi — Jn)
=ry=

\/27:1(}/;' - )7n)2 : Z;’:l(é\‘ + Bxi - ):/n)2
See R script

14/14



