• A dataset x_1, \ldots, x_n consists of repeated measurements of a phenomenon we are interested in understanding
 ▶ E.g., measurement of the speed of light

• We model a dataset as the realization of a random sample

Random sample

A random sample is a collection of i.i.d. random variables $X_1, \ldots, X_n \sim F(\alpha)$, where $F()$ is the distribution and α its parameter(s).

• Challenging questions/inferences on a population given a sample:
 ▶ How to determine $E[X]$, $\text{Var}(X)$, or other functions of X?
 ▶ How to determine α, assuming to know the form of F?
 ▶ How to determine both F and α?
What is an estimate of the true speed of light (estimand)?

\[x_1 = 850, \text{ or } \min x_i, \text{ or } \max x_i, \text{ or } \bar{x}_n = 852.4 \]
An example

• Speed of light dataset as realization of

\[X_i = c + \epsilon_i \]

where \(\epsilon_i \) is measurement error with \(E[\epsilon_i] = 0 \) and \(Var(\epsilon_i) = \sigma^2 \)

• We are then interested in \(E[X_i] = c \)

• How to estimate?

• Use some info. For \(X_1 \):

\[E[X_1] = c \quad Var(X_1) = \sigma^2 \]

• Use all info. For \(\bar{X}_n = (X_1 + \ldots + X_n)/n \):

\[E[\bar{X}_n] = c \quad Var(\bar{X}_n) = \frac{Var(X_1)}{n} = \frac{\sigma^2}{n} \]

Hence, for \(n \to \infty \), \(Var(\bar{X}_n) \to 0 \)
Estimate

Estimand and estimate

An *estimand* θ is an unknown parameter of a distribution $F()$.

An *estimate* t of θ is a value that obtained as a function $h()$ over a dataset x_1, \ldots, x_n:

$$t = h(x_1, \ldots, x_n)$$

- $t = \bar{x}_n = 852.4$ is an estimate of the speed of light (estimand)
- $t = x_1 = 850$ is another estimate

Since x_1, \ldots, x_n are modelled as realizations of X_1, \ldots, X_n, estimates are realizations of the corresponding sample statistics $h(X_1, \ldots, X_n)$

Statistics and estimator

A *statistics* is a function of $h(X_1, \ldots, X_n)$ of r.v.’s.

An *estimator* of a parameter θ is a statistics $T_n = h(X_1, \ldots, X_n)$ intended to provide information about θ.

- An estimate $t = h(x_1, \ldots, x_n)$ is a realization of the estimator $T_n = h(X_1, \ldots, X_n)$
- $T_n = \bar{X}_n = (X_1 + \ldots, X_n)/n$ is an estimator of μ
- $T_n = X_1$ is another estimator
Unbiased estimator

• The probability distribution of an estimator T is called the *sampling distribution* of T.

Unbiased estimator

An estimator $T_n = h(X_1, \ldots, X_n)$ of a parameter θ (estimand) is *unbiased* if:

$$E[T_n] = \theta$$

If the difference $E[T_n] - \theta$, called the *bias* of T_n, is non-zero, T_n is called a *biased* estimator.

• $E[T_n] > \theta$ is a positive bias, $E[T_n] < \theta$ is a negative bias.

• **Asymptotically unbiased:** $\lim_{n \to \infty} E[T_n] = \theta$

• Sometimes, T_n written as $\hat{\theta}$, e.g., $\hat{\mu}$ estimator of μ.
On $E[T]$

- Random sample i.i.d. $X_1, \ldots, X_n \sim F(\alpha)$
- $E[T] = E[h(X_1, \ldots, X_n)]$ over the joint distribution $\prod_{i=1}^{n} F(\alpha)$
- E.g., for $F()$ continuous with d.f. $f()$

\[
E[T] = \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} h(x_1, \ldots, x_n) f(x_1) \ldots f(x_n) \, dx_1, \ldots, dx_n
\]
When is an estimator better than another one?

Efficiency of unbiased estimators

Let T_1 and T_2 be unbiased estimators of the same parameter θ. The estimator T_2 is *more efficient* than T_1 if:

$$\text{Var}(T_2) < \text{Var}(T_1)$$

- The *relative efficiency* of T_2 w.r.t. T_1 is $\text{Var}(T_1)/\text{Var}(T_2)$
- Speed of light example:
 - $E[X_1] = E[X_2] = \ldots = E[\bar{X}_n] = c$, i.e., all unbiased estimators
 - The mean is more efficient than a single value
 $$\text{Var}(\bar{X}_n) = \sigma^2/n < \sigma^2 = \text{Var}(X_1) \quad \frac{\text{Var}(X_1)}{\text{Var}(\bar{X}_n)} = n$$

- The standard deviation of the sampling distribution is called the *standard error* (SE)
 - The SE of the mean estimator \bar{X}_n is σ/\sqrt{n}
Unbiased estimators for expectation and variance

\[\bar{X}_n = \frac{X_1 + X_2 + \cdots + X_n}{n} \]

is an unbiased estimator for \(\mu \) and

\[S_n^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2 \]

is an unbiased estimator for \(\sigma^2 \).

- Estimates: sample mean \(\bar{x}_n \) and sample variance \(s_n^2 \)
- \(E[\bar{X}_n] = (E[X_1] + \ldots + E[X_n])/n = \mu \) and, by CLT, \(\text{Var}(\bar{X}_n) \to 0 \) for \(n \to \infty \)
- Why division by \(n - 1 \) in \(S_n^2 \)? [Bessel’s correction]
\(E[S_n^2] = \sigma^2 \)

(1) \(E[X_i - \bar{X}_n] = E[X_i] - E[\bar{X}_n] = \mu - \mu = 0 \)

(2) \(\text{Var}(X_i - \bar{X}_n) = E[(X_i - \bar{X}_n)^2] - E[X_i - \bar{X}_n]^2 = E[(X_i - \bar{X}_n)^2] \quad \text{[by (1)]} \)

(3) \(X_i - \bar{X}_n = X_i - \frac{1}{n} \sum_{j=1}^{n} X_j = X_i - \frac{1}{n} X_i - \frac{1}{n} \sum_{j=1, j\neq i}^{n} X_j = \frac{n-1}{n} X_i - \frac{1}{n} \sum_{j=1, j\neq i}^{n} X_j \)

(4) From (3):

\[
\text{Var}(X_i - \bar{X}_n) = \left(\frac{n-1}{n^2} \right) \sigma^2 + \frac{1}{n^2} (n-1) \sigma^2 = \frac{n-1}{n} \sigma^2
\]

- Therefore:

\[
E[S_n^2] = \frac{1}{n-1} \sum_{i=1}^{n} E[(X_i - \bar{X}_n)^2] = \frac{1}{n-1} \sum_{i=1}^{n} \text{Var}(X_i - \bar{X}_n) = \frac{1}{n-1} \frac{n-1}{n} \sigma^2 = \sigma^2
\]

- **In general:** \(\text{Var}(S_n^2) = \frac{1}{n} (\mu_4 - \frac{n-3}{n-1} \sigma^4) \to 0 \) for \(n \to \infty \)
Degree of freedom

- For the estimator $V_n^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2$:

$$E[V_n^2] = E\left[\frac{n-1}{n} S_n^2 \right] = \frac{n-1}{n} \sigma^2$$

- Hence, $E[V_n^2] - \sigma^2 = -\sigma^2 / n$ [Negative bias]

- V_n^2 is asymptotically unbiased, i.e., $E[V_n^2] \rightarrow \sigma^2$ when $n \rightarrow \infty$

- Intuition on dividing by $n - 1$
 - S_n^2 uses in its definition \bar{X}_n
 - Thus, $(X_i - \bar{X}_n)$’s are not independent
 - S_n^2 can be computed from $n - 1$ r.v. and the mean \bar{X}_n (the n-th r.v. is implied)

- The degrees of freedom for an estimate is the number of observations n minus the number of parameters already estimated

- Assume that μ is known. Show that $\frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$ is unbiased [Prove it]
Unbiasedness does not carry over (no functional invariance)

• $E[S^2_n] = \sigma^2$ implies $E[S_n] = \sigma$?

• Since $g(x) = x^2$ is convex, by Jensen’s inequality:

$$\sigma^2 = E[S^2_n] = E[g(S_n)] > g(E[S_n]) = E[S_n]^2$$

which implies $E[S_n] < \sigma$ \quad [Negative bias]

• In general, if T unbiased for θ does not imply $g(T)$ unbiased for $g(\theta)$
 ▶ But it holds for $g()$ linear transformation!

• A non-parametric (i.e., distribution free) unbiased estimator of σ does not exist!
Estimators for the median and quantiles

- $T = \text{Med}(X_1, \ldots, X_n)$, for X_i with density function $f(x)$
- Let m be the true median, i.e., $F(m) = 0.5$:

 $$\text{for } n \to \infty, \ T \sim N(m, \frac{1}{4nf(m)^2})$$

 and then for $n \to \infty$:

 $$E[\text{Med}(X_1, \ldots, X_n)] = m$$

- $T = q_{X_1,\ldots,X_n}(p)$, for X_i with density function $f(x)$
- Let q_p be the true p-quantile, i.e., $F(q_p) = p$:

 $$\text{for } n \to \infty, \ T \sim N(q_p, \frac{p(1-p)}{nf(q_p)^2})$$

 and then for $n \to \infty$:

 $$E[q_{X_1,\ldots,X_n}(p)] = q_p$$

 [CLT for medians]

 [CLT for quantiles]

See R script
Estimator for MAD

• Median of absolute deviations (*MAD*):

\[
T = \text{MAD}(X_1, \ldots, X_n) = \text{Med}(|X_1 - \text{Med}(X_1, \ldots, X_n)|, \ldots, |X_n - \text{Med}(X_1, \ldots, X_n)|)
\]

▶ For \(X \sim F \), the population MAD is \(Md = G^{-1}(0.5) \) where \(|X - F^{-1}(0.5)| \sim G \)
▶ For \(F \) symmetric, \(Md = F^{-1}(0.75) - F^{-1}(0.5) \).
▶ \(Md \) is a more robust measure of scale than standard deviation

• Under mild assumptions: \([\text{CLT for MADs}]\)

\[
\text{for } n \to \infty, T \sim N(Md, \frac{\sigma_1^2}{n})
\]

where \(\sigma_1 \) is defined in terms of \(Md, F^{-1}(0.5), F() \), and then for \(n \to \infty \):

\[
E[\text{MAD}(X_1, \ldots, X_n)] = Md
\]
Estimators for correlation

- Pearson’s r estimator:
 \[
 r = \frac{\sum_{i=1}^{n}(X_i - \bar{X}) \cdot (Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n}(X_i - \bar{X})^2 \cdot \sum_{i=1}^{n}(Y_i - \bar{Y})^2}}
 \]
 \[
 \rho = \frac{Cov(X, Y)}{\sigma_X \cdot \sigma_Y}
 \]

- The sampling distribution of the estimator is highly skewed!
- **Fisher transformation** $FisherZ(r) = \frac{1}{2} \log \frac{1+r}{1-r}$
- Transform a skewed sample into a normalized format
- If X, Y have a bivariate normal distribution:
 \[
 FisherZ(r) \sim N(FisherZ(\rho), \frac{1}{n-3})
 \]
 Hence:
 \[
 FisherZ^{-1}(E[FisherZ(r)]) = \rho
 \]

- Same for Spearman’s correlation (as it is a special case of Pearson’s)
Estimators for correlation

- Kendall’s τ_a estimator:

$$\tau_{xy} = \frac{2 \sum_{i<j} \text{sgn}(X_i - X_j) \cdot \text{sgn}(Y_i - Y_j)}{n \cdot (n - 1)}$$

$$\theta = E_{X_1, X_2 \sim F_X, Y_1, Y_2 \sim F_Y} \left[\text{sgn}(X_1 - X_2) \cdot \text{sgn}(Y_1 - Y_2) \right]$$

- For $n > 10$, the sampling distribution is well approximated as:

$$\tau_{xy} \sim N(\theta, \frac{2(2n + 5)}{9n(n - 1)})$$

Hence:

$$E[\tau_{xy}] = \theta$$

See R script
Example: estimating the probability of zero arrivals

- X_1, \ldots, X_n, for $n = 30$, observations:

 $X_i = \text{number of arrivals (of a packet, of a call, etc.) in a minute}$

- $X_i \sim \text{Pois}(\mu)$, where $p(k) = P(X = k) = \frac{\mu^k}{k!} e^{-\mu} \quad [E[X] = \mu]$

- We want to estimate $p_0 = p(0)$, probability of zero arrivals

- Frequentist-based estimator S:

 $S = \frac{|\{i \mid X_i = 0\}|}{n}$

 - Takes values $0/30, 1/30, \ldots, 30/30 \ldots$ may not exactly be p_0

 - $S = Y/n$ where $Y = \mathbb{1}_{X_1=0} + \ldots + \mathbb{1}_{X_n=0} \sim \text{Bin}(n, p_0)$

 - Hence, $E[S] = \frac{1}{n} E[Y] = \frac{n}{n} p_0 = p_0 \quad [S \text{ is unbiased}]$
Example: estimating the probability of zero arrivals

- Since $p_0 = p(0) = e^{-\mu}$, we devise a mean-based estimator T:

 $$T = e^{-\bar{X}_n}$$

 - By Jensen’s inequality:

 $$E[T] = E[e^{-\bar{X}_n}] > e^{-E[\bar{X}_n]} = e^{-\mu} = p_0$$

 Hence T is biased!

 - $T = e^{-Z/n}$ where $Z = X_1 + \ldots + X_n$ is the sum of $Poi(\mu)$’s, hence $Z \sim Poi(n \cdot \mu)$

 Prove it by doing $[T, Exercise 11.2]$

 $$E[T] = \sum_{k=0}^{\infty} e^{-\frac{k}{n}} \left(\frac{n\mu}{k!}\right)^k e^{-n\mu} = e^{-n\mu} \sum_{k=0}^{\infty} \left(\frac{n\mu e^{-\frac{1}{n}}}{k!}\right)^k = e^{-\mu n(1-e^{-1/n})} \to e^{-\mu} = p_0 \text{ for } n \to \infty$$

 \square since $\sum_{k=0}^{\infty} \frac{x^k}{k!} = e^x$ and $\lim_{n\to\infty} n(1 - e^{-1/n}) = 1$

 Hence T is asymptotically unbiased!

 See R script
Example: estimating the probability of zero arrivals

- Let’s look at the variances:

\[
\text{Var}(S) = \frac{1}{n^2}\text{Var}(Y) = \frac{np_0(1 - p_0)}{n^2} = \frac{p_0(1 - p_0)}{n} \rightarrow 0 \text{ for } n \rightarrow \infty
\]

\[
\text{Var}(T) = E[T^2] - E[T]^2 = \ldots \text{ exercise } \ldots \rightarrow 0 \text{ for } n \rightarrow \infty
\]

See R script
MSE: Mean Squared Error of an estimator

- What if one estimator is unbiased and the other is biased but with a smaller variance?

\[
\text{MSE}(T) = E[(T - \theta)^2]
\]

- An estimator \(T_1\) performs better than \(T_2\) if \(\text{MSE}(T_1) < \text{MSE}(T_2)\)

- Note that:

\[
\text{MSE}(T) = E[(T - E[T] + E[T] - \theta)^2] = \\
E[(T - E[T])^2] + (E[T] - \theta)^2 + 2E[T - E[T]](E[T] - \theta) = \text{Var}(T) + (E[T] - \theta)^2
\]

- \(E[T] - \theta\) is called the bias of the estimator

- Hence, \(\text{MSE} = \text{Var} + \text{Bias}^2\)

- A biased estimator with a small variance may be better than an unbiased one with a large variance!

See R script
Best estimators

Consistent estimator

An estimator \(T_n \) is a squared error consistent estimator if:

\[
\lim_{n \to \infty} MSE(T_n) = 0
\]

• Hence, for \(n \to \infty \), both \(\text{Bias} \) and \(\text{Var} \) converge to 0
• \(\bar{X}_n \) is a squared error consistent estimator of \(\mu \)
• What if there is no consistent estimator or if there are more than once?

MVUE

An unbiased estimator \(T_n \) is a Minimum Variance Unbiased Estimators (MVUE) if:

\[
\text{Var}(T_n) \leq \text{Var}(S_n)
\]

for all unbiased estimators \(S_n \).

• Corollary. \(MSE(T_n) \leq MSE(S_n) \)
• \(\bar{X}_n \) is a MVUE of \(\mu \) if \(X_1, \ldots, X_n \sim N(\mu, \sigma^2) \) [proof in the next lesson]