Statistical model for repeated measurement

- A dataset x_1, \ldots, x_n consists of repeated measurements of a phenomenon we are interested in understanding
 - E.g., measurement of the speed of light
- We model a dataset as the realization of a random sample

Random sample

A *random sample* is a collection of i.i.d. random variables $X_1, \ldots, X_n \sim F(\alpha)$, where $F()$ is the distribution and α its parameter(s).

- Challenging questions/inferences on a population given a sample:
 - How to determine $E[X]$, $Var(X)$, or other functions of X?
 - How to determine α, assuming to know the form of F?
 - How to determine both F and α?
An example

Table 17.1. Michelson data on the speed of light.

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>850</td>
<td>740</td>
<td>900</td>
<td>1070</td>
<td>930</td>
<td>850</td>
<td>950</td>
<td>980</td>
<td>980</td>
</tr>
<tr>
<td>1000</td>
<td>980</td>
<td>930</td>
<td>650</td>
<td>760</td>
<td>810</td>
<td>1000</td>
<td>1000</td>
<td>960</td>
</tr>
<tr>
<td>960</td>
<td>940</td>
<td>960</td>
<td>940</td>
<td>880</td>
<td>800</td>
<td>850</td>
<td>880</td>
<td>900</td>
</tr>
<tr>
<td>830</td>
<td>790</td>
<td>810</td>
<td>880</td>
<td>880</td>
<td>830</td>
<td>800</td>
<td>790</td>
<td>760</td>
</tr>
<tr>
<td>880</td>
<td>880</td>
<td>860</td>
<td>720</td>
<td>720</td>
<td>620</td>
<td>860</td>
<td>970</td>
<td>950</td>
</tr>
<tr>
<td>880</td>
<td>910</td>
<td>850</td>
<td>870</td>
<td>840</td>
<td>840</td>
<td>850</td>
<td>840</td>
<td>840</td>
</tr>
<tr>
<td>890</td>
<td>810</td>
<td>810</td>
<td>820</td>
<td>800</td>
<td>770</td>
<td>760</td>
<td>740</td>
<td>750</td>
</tr>
<tr>
<td>910</td>
<td>920</td>
<td>890</td>
<td>860</td>
<td>880</td>
<td>720</td>
<td>840</td>
<td>850</td>
<td>850</td>
</tr>
<tr>
<td>890</td>
<td>840</td>
<td>780</td>
<td>810</td>
<td>760</td>
<td>810</td>
<td>790</td>
<td>810</td>
<td>820</td>
</tr>
<tr>
<td>870</td>
<td>870</td>
<td>810</td>
<td>740</td>
<td>810</td>
<td>940</td>
<td>950</td>
<td>800</td>
<td>810</td>
</tr>
</tbody>
</table>

- What is an estimate of the true speed of light (estimand)?
 \[x_1 = 850, \text{ or } \min x_i, \text{ or } \max x_i, \text{ or } \bar{x}_n = 852.4 \]
An example

- Speed of light dataset as realization of

\[X_i = c + \epsilon_i \]

where \(\epsilon_i \) is measurement error with \(E[\epsilon_i] = 0 \) and \(Var(\epsilon_i) = \sigma^2 \)

- We are then interested in \(E[X_i] = c \)

- How to estimate?

- Use some info. For \(X_1 \):

\[E[X_1] = c \quad Var(X_1) = \sigma^2 \]

- Use all info. For \(\bar{X}_n = \frac{X_1 + \ldots + X_n}{n} \):

\[E[\bar{X}_n] = c \quad Var(\bar{X}_n) = \frac{Var(X_1)}{n} = \frac{\sigma^2}{n} \]

Hence, for \(n \to \infty \), \(Var(\bar{X}_n) \to 0 \)
Estimate

Estimand and estimate

An *estimand* θ is an unknown parameter of a distribution $F()$.
An *estimate* t of θ is a value that obtained as a function $h()$ over a dataset x_1, \ldots, x_n:

$$t = h(x_1, \ldots, x_n)$$

- $t = \bar{x}_n = 852.4$ is an estimate of the speed of light (estimand)
- $t = x_1 = 850$ is another estimate
- Since x_1, \ldots, x_n are modelled as realizations of X_1, \ldots, X_n, estimates are realizations of the corresponding sample statistics $h(X_1, \ldots, X_n)$

Statistics and estimator

A *statistics* is a function of $h(X_1, \ldots, X_n)$ of r.v.’s.
An *estimator* of a parameter θ is a statistics $T_n = h(X_1, \ldots, X_n)$ intended to provide information about θ.

- An estimate $t = h(x_1, \ldots, x_n)$ is a realization of the estimator $T_n = h(X_1, \ldots, X_n)$
- $T_n = \bar{X}_n = (X_1 + \ldots, X_n)/n$ is an estimator of μ
- $T_n = X_1$ is another estimator
Unbiased estimator

- The probability distribution of an estimator T is called the *sampling distribution* of T.

Unbiased estimator

An estimator $T_n = h(X_1, \ldots, X_n)$ of a parameter θ (estimand) is *unbiased* if:

$$E[T_n] = \theta$$

If the difference $E[T_n] - \theta$, called the *bias* of T_n, is non-zero, T_n is called a *biased* estimator.

- $E[T_n] > \theta$ is a positive bias, $E[T_n] < \theta$ is a negative bias.
- **Asymptotically unbiased**: $\lim_{n \to \infty} E[T_n] = \theta$
- Sometimes, T_n written as $\hat{\theta}$, e.g., $\hat{\mu}$ estimator of μ.
On $E[T]$

- Random sample i.i.d. $X_1, \ldots, X_n \sim F(\alpha)$
- $E[T] = E[h(X_1, \ldots, X_n)]$ over the joint distribution $\prod_{i=1}^{n} F(\alpha)$
- E.g., for $F()$ continuous with d.f. $f()$

$$E[T] = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} h(x_1, \ldots, x_n) f(x_1) \cdots f(x_n) dx_1, \ldots, dx_n$$
When is an estimator better than another one?

- The standard deviation of the sampling distribution is called the *standard error* (SE).

Efficiency of unbiased estimators

Let T_1 and T_2 be unbiased estimators of the same parameter θ. The estimator T_2 is *more efficient* than T_1 if:

$$\text{Var}(T_2) < \text{Var}(T_1)$$

- The *relative efficiency* of T_2 w.r.t. T_1 is $\text{Var}(T_1)/\text{Var}(T_2)$.

Speed of light example:

- $E[X_1] = E[X_2] = \ldots = E[\bar{X}_n] = c$, i.e., all unbiased estimators

The mean is more efficient than a single value:

$$\text{Var}(\bar{X}_n) = \sigma^2/n < \sigma^2 = \text{Var}(X_1) \quad \frac{\text{Var}(X_1)}{\text{Var}(\bar{X}_n)} = n$$
Unbiased estimators for expectation and variance

Suppose X_1, X_2, \ldots, X_n is a random sample from a distribution with finite expectation μ and finite variance σ^2. Then

$$\bar{X}_n = \frac{X_1 + X_2 + \cdots + X_n}{n}$$

is an unbiased estimator for μ and

$$S_n^2 = \frac{1}{n - 1} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2$$

is an unbiased estimator for σ^2.

- Estimates: sample mean \bar{x}_n and sample variance s_n^2
- $E[\bar{X}_n] = (E[X_1] + \ldots + E[X_n])/n = \mu$ and, by CLT, $\text{Var}(\bar{X}_n) \to 0$ for $n \to \infty$
- Why division by $n - 1$ in S_n^2?

[Bessel’s correction]
\[E[S^2_n] = \sigma^2 \]

(1) \[E[X_i - \bar{X}_n] = E[X_i] - E[\bar{X}_n] = \mu - \mu = 0 \]

(2) \[\text{Var}(X_i - \bar{X}_n) = E[(X_i - \bar{X}_n)^2] - E[X_i - \bar{X}_n]^2 = E[(X_i - \bar{X}_n)^2] \quad \text{[by (1)]} \]

(3) \[X_i - \bar{X}_n = X_i - \frac{1}{n} \sum_{j=1}^{n} X_j = X_i - \frac{1}{n} X_i - \frac{1}{n} \sum_{j=1, j \neq i}^{n} X_j = \frac{n-1}{n} X_i - \frac{1}{n} \sum_{j=1, j \neq i}^{n} X_j \]

(4) From (3):

\[\text{Var}(X_i - \bar{X}_n) = \frac{(n-1)^2}{n^2} \sigma^2 + \frac{1}{n^2} (n-1) \sigma^2 = \frac{n-1}{n} \sigma^2 \]

- Therefore:

\[E[S^2_n] = \frac{1}{n-1} \sum_{i=1}^{n} E[(X_i - \bar{X}_n)^2] = \frac{1}{n-1} \sum_{i=1}^{n} \text{Var}(X_i - \bar{X}_n) = \frac{1}{n-1} \frac{n-1}{n} \sigma^2 = \sigma^2 \]

- In general: \[\text{Var}(S^2_n) = \frac{1}{n} (\mu_4 - \frac{n-3}{n-1} \sigma^4) \to 0 \text{ for } n \to \infty \]
Degree of freedom

- For the estimator $V_n^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2$:

$$E[V_n^2] = E\left[\frac{n-1}{n} S_n^2\right] = \frac{n-1}{n} \sigma^2$$

- Hence, $E[V_n^2] - \sigma^2 = -\sigma^2/n$ \[Negative bias\]

- V_n^2 is asymptotically unbiased, i.e., $E[V_n^2] \to \sigma^2$ when $n \to \infty$

- Intuition on dividing by $n - 1$
 - S_n^2 uses in its definition \bar{X}_n
 - Thus, $(X_i - \bar{X}_n)$’s are not independent
 - S_n^2 can be computed from $n - 1$ r.v. and the mean \bar{X}_n (the n-th r.v. is implied)

- The degrees of freedom for an estimate is the number of observations n minus the number of parameters already estimated

- Assume that μ is known. Show that $\frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$ is unbiased \[Prove it\]
Unbiasedness does not carry over (no functional invariance)

- $E[S_n^2] = \sigma^2$ implies $E[S_n] = \sigma$?
- Since $g(x) = x^2$ is convex, by Jensen’s inequality:
 \[
 \sigma^2 = E[S_n^2] = E[g(S_n)] > g(E[S_n]) = E[S_n]^2
 \]
 which implies $E[S_n] < \sigma$

[Negative bias]

- In general, if T unbiased for θ does not imply $g(T)$ unbiased for $g(\theta)$
 - But it holds for $g()$ linear transformation

- A non-parametric (i.e., distribution free) unbiased estimator of σ does not exist
Estimators for the median and quantiles

- \(T = \text{Med}(X_1, \ldots, X_n) \), for \(X_i \) with density function \(f(x) \)
- Let \(m \) be the true median, i.e., \(F(m) = 0.5 \):
 \[
 \text{for } n \to \infty, \quad T \sim N\left(m, \frac{1}{4nf(m)^2}\right)
 \]
 and then for \(n \to \infty \):
 \[
 E[\text{Med}(X_1, \ldots, X_n)] = m
 \]
- \(T = \text{Quantile}_p(X_1, \ldots, X_n) \), for \(X_i \) with density function \(f(x) \)
- Let \(q \) be the true \(p \)-quantile, i.e., \(F(q) = p \):
 \[
 \text{for } n \to \infty, \quad T \sim N\left(q, \frac{p(1-p)}{nf(q)^2}\right)
 \]
 and then for \(n \to \infty \):
 \[
 E[\text{Quantile}_p(X_1, \ldots, X_n)] = q
 \]

[CLT for medians]

[CLT for quantiles]

See R script
Estimator for MAD

- Median of absolute deviations (MAD):

\[T = \text{MAD}(X_1, \ldots, X_n) = \text{Med}(|X_1 - \text{Med}(X_1, \ldots, X_n)|, \ldots, |X_n - \text{Med}(X_1, \ldots, X_n)|) \]

- For \(X \sim F \), the population MAD is \(Md = G^{-1}(0.5) \) where \(|X - F^{-1}(0.5)| \sim G \)
- For \(F \) symmetric, \(Md = F^{-1}(0.75) - F^{-1}(0.5) \).
- \(Md \) is a more robust measure of scale than standard deviation

- Under mild assumptions: [CLT for MADs]

\[\text{for } n \to \infty, \; T \sim N(Md, \frac{\sigma_1^2}{n}) \]

where \(\sigma_1 \) is defined in terms of \(Md, F^{-1}(0.5), F() \).

- Then, for \(n \to \infty \):

\[E[\text{MAD}(X_1, \ldots, X_n)] = Md \]
Estimators for correlation

- Pearson’s r estimator:

\[r = \frac{\sum_{i=1}^{n}(X_i - \bar{X}) \cdot (Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n}(X_i - \bar{X})^2 \cdot \sum_{i=1}^{n}(Y_i - \bar{Y})^2}} \]

\[\rho = \frac{\text{Cov}(X, Y)}{\sigma_X \cdot \sigma_Y} \]

- The sampling distribution of the estimator is highly skewed!
- **Fisher transformation** $FisherZ(r) = \frac{1}{2} \log \frac{1+r}{1-r}$
- Transform a skewed sample into a normalized format
- If X, Y have a bivariate normal distribution:

\[FisherZ(r) \sim N(FisherZ(\rho), \frac{1}{n-3}) \]

Hence:

\[FisherZ^{-1}(E[FisherZ(r)]) = \rho \]

- Same for Spearman’s correlation (as it is a special case of Pearson’s)
Estimators for correlation

- Kendall’s τ_a estimator:

$$\tau_{xy} = \frac{2 \sum_{i<j} \text{sgn}(X_i - X_j) \cdot \text{sgn}(Y_i - Y_j)}{n \cdot (n-1)}$$

$$\theta = E[\text{sgn}(X_1 - X_2) \cdot \text{sgn}(Y_1 - Y_2)]$$

- For $n > 10$, the sampling distribution is well approximated as:

$$\tau_{xy} \sim N(\theta, \frac{2(2n+5)}{9n(n-1)})$$

Hence:

$$E[\tau_{xy}] = \theta$$

See R script
Example: estimating the probability of zero arrivals

- X_1, \ldots, X_n, for $n = 30$, observations:

 $X_i = \text{no of arrivals (of a packet, of a call, etc.) in a minute}$

- $X_i \sim \text{Pois}(\mu)$, where $p(k) = P(X = k) = \frac{\mu^k}{k!} e^{-\mu}$ \hfill $[E[X] = \mu]$

- We want to estimate $p_0 = p(0)$, probability of zero arrivals

- Frequentist-based estimator S:

 $S = \frac{|\{i \mid X_i = 0\}|}{n}$

- Takes values $0/30, 1/30, \ldots, 30/30 \ldots$ may not exactly be p_0

- $S = Y/n$ where $Y = \mathbb{1}_{X_1=0} + \ldots + \mathbb{1}_{X_n=0} \sim \text{Bin}(n, p_0)$

- Hence, $E[S] = \frac{1}{n}E[Y] = \frac{n}{n}p_0 = p_0$ \hfill $[S \text{ is unbiased}]$
Example: estimating the probability of zero arrivals

- Since \(p_0 = p(0) = e^{-\mu} \), we devise a mean-based estimator \(T \):

 - By Jensen’s inequality:

 \[
 E[T] = E[e^{-\bar{X}_n}] > e^{-E[\bar{X}_n]} = e^{-\mu} = p_0
 \]

 Hence \(T \) is biased!

 - \(T = e^{-Z/n} \) where \(Z = X_1 + \ldots + X_n \) is the sum of \(Poi(\mu) \)'s, hence \(Z \sim Poi(n \cdot \mu) \)

 Prove it by doing \([T, \text{Exercise 11.2}]\)

 \[
 E[T] = \sum_{k=0}^{\infty} e^{-\frac{k}{n}} (n\mu)^k \frac{1}{k!} e^{-n\mu} = e^{-n\mu} \sum_{k=0}^{\infty} \left(\frac{n\mu e^{-\frac{1}{n}}}{k!} \right)^k = e^{-\mu n(1 - e^{-1/n})} \to e^{-\mu} = p_0 \quad \text{for } n \to \infty
 \]

 \[
 \text{since } \sum_{k=0}^{\infty} \frac{x^k}{k!} = e^x \text{ and } \lim_{n \to \infty} n(1 - e^{-1/n}) = 1
 \]

 Hence \(T \) is asymptotically unbiased!

 See R script
Example: estimating the probability of zero arrivals

- Let’s look at the variances:

\[
\text{Var}(S) = \frac{1}{n^2} \text{Var}(Y) = \frac{np_0(1-p_0)}{n^2} = \frac{p_0(1-p_0)}{n} \rightarrow 0 \text{ for } n \rightarrow \infty
\]

\[
\text{Var}(T) = E[T^2] - E[T]^2 = \ldots \text{ exercise } \ldots \rightarrow 0 \text{ for } n \rightarrow \infty
\]

See R script
MSE: Mean Squared Error of an estimator

- What if one estimator is unbiased and the other is biased but with a smaller variance?

\[
MSE(T) = E[(T - \theta)^2]
\]

- An estimator \(T_1 \) performs better than \(T_2 \) if \(MSE(T_1) < MSE(T_2) \)
- Note that:

\[
MSE(T) = E[(T - E[T] + E[T] - \theta)^2] = \\
= E[(T - E[T])^2] + (E[T] - \theta)^2 + 2E[T - E[T]](E[T] - \theta) = Var(T) + (E[T] - \theta)^2
\]

- \(E[T] - \theta \) is called the bias of the estimator
- Hence, \(MSE = Var + Bias^2 \)
- A biased estimator with a small variance may be better than an unbiased one with a large variance!

See R script
Best estimators

Consistent estimator

An estimator T_n is a squared error consistent estimator if:

$$\lim_{n \to \infty} MSE(T_n) = 0$$

- Hence, for $n \to \infty$, both $Bias$ and Var converge to 0
- \bar{X}_n is a squared error consistent estimator of μ
- What if there is no consistent estimator or if there are more than once?

MVUE

An unbiased estimator T_n is a Minimum Variance Unbiased Estimators (MVUE) if:

$$Var(T_n) \leq Var(S_n)$$

for all unbiased estimators S_n.

- **Corollary.** $MSE(T_n) \leq MSE(S_n)$
- \bar{X}_n is a MVUE of μ if $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$ [proof in the next lesson]