• Probability models govern some random phenomena
• Confronted with a new phenomenon, we want to learn about the randomness associated with it
 ▶ Parametric (efficient) vs non-parameteric (general) methods
• Record observations x_1, \ldots, x_n (a dataset)
• n can be large: need to condense for easy comprehension and processing
• Numerical summaries:
 ▶ Univariate: sample/empirical mean, median, standard deviation, quantiles, MAD
 ▶ Multi-variate: Pearson’s, Spearman’s, Kendall’s correlation coefficients
Sample summaries

Main idea (plug-in method): translate summaries of empirical distribution (sample) F_n to estimate summaries of the generating distribution F

- Measures of centrality
 - Sample mean:
 $$\bar{x}_n = \frac{x_1 + \ldots + x_n}{n}$$
 - Median for sorted x_1, \ldots, x_n:
 $$Med(x_1, \ldots, x_n) = \begin{cases}
 x_{\frac{n}{2}+1} & \text{if } n \text{ is odd} \\
 \left(x_{\frac{n}{2}} + x_{\frac{n}{2}+1} \right)/2 & \text{if } n \text{ is even}
 \end{cases}$$

E.g., $Med(2, 3, 4) = 3$ and $Med(2, 3, 4, 5) = 3.5$
Measures of variability

- **Sample variance:**
 \[s_n^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x}_n)^2 = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_i^2 - n \cdot \bar{x}_n^2 \right) \]
 \[\text{Var}(X), \sigma^2 \]
 Divide by \(n-1 \) for a sample, and by \(n \) for a population! [Bessel’s correction]

- **Sample standard deviation:**
 \[s_n = \sqrt{s_n^2} \]
 \[\sqrt{\text{Var}(X)}, \sigma \]

- **Median of absolute deviations (MAD):**
 \[\text{MAD}(x_1, \ldots, x_n) = \text{Med}(|x_1 - \text{Med}(x_1, \ldots, x_n)|, \ldots, |x_n - \text{Med}(x_1, \ldots, x_n)|) \]
 - For \(X \sim F \), the population MAD is \(Md = G^{-1}(0.5) \) where \(|X - F^{-1}(0.5)| \sim G\)
 - For \(F \) symmetric, \(Md = F^{-1}(0.75) - F^{-1}(0.5) \).
 - \(Md \) is a more robust-to-outlier measure of scale than standard deviation.
Order statistics and empirical quantiles

- Let $x_{(1)}, \ldots, x_{(n)}$ be $\text{sort}(x_1, \ldots, x_n)$. We call $x_{(i)}$ the i-th order statistics.
 - The order statistics consist of the same elements in the dataset, but in ascending order.

- Distribution quantiles $q_p = \inf_x \{ P(X \leq x) \geq p \} = \inf_x \{ F(x) \geq p \}$
 [See Lesson 08]

- Empirical quantiles: $q(p) = \inf_x \{ F_n(x) \geq p \} = \inf_x \{ | \{ i \mid x_i \leq x \} | / n \geq p \}$
 - Type 6 (book [T]): for $p = i / (n + 1)$

 $q(p) = x_{(p \cdot (n + 1))} = x_{(i)}$

 □ E.g., for 2, 3, 4, 5, 6, $q(0.167) = 2$, $q(0.333) = 3$, $q(0.5) = 4$, $q(0.667) = 5$, $q(0.833) = 6$

 - Type 7 (default in R): for $p = (i - 1) / (n - 1)$

 $q(p) = x_{(p \cdot (n - 1) + 1)} = x_{(i)}$

 □ E.g., for 2, 3, 4, 5, 6, $q(0) = 2$, $q(0.25) = 3$, $q(0.5) = 4$, $q(0.75) = 5$, $q(1) = 6$

- What is $q(p)$ when $p \cdot (n + 1)$ is not an integer?

 $q(p) = x_{(k)} + \alpha (x_{(k+1)} - x_{(k)})$

 where $k = \lfloor p \cdot (n + 1) \rfloor$ and $\alpha = p \cdot (n + 1) - k$ (remainder)
The box-and-whisker plot

- Axis here is with reference to a standard Normal distribution
- **See John Tukey** (designed FFT, coined 'bit' & 'software', and visionary of **data science**)
Association and correlation

- Bivariate analysis of joint distribution of X and Y or of a sample $(x_1, y_1), \ldots, (x_n, y_n)$

- **Association**: one variable provides information on the other
 - $X \perp \perp Y$ independent, i.e., $P(X|Y) = P(X)$: zero information
 - $Y = f(X)$ deterministic association with f invertible: maximum information

- **Correlation**: the two variables show an increasing/decreasing trend
 - $X \perp \perp Y$ implies $\text{Cov}(X, Y) = 0$
 - the converse is not always true

- **Coefficient or measure of association/correlation**: determine the strength of association/correlation between two variables and the direction of the relationship
Measures of association

<table>
<thead>
<tr>
<th>Variable Y</th>
<th>Nominal</th>
<th>Ordinal</th>
<th>Continuous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal</td>
<td>ϕ or λ</td>
<td>Rank biserial</td>
<td>Point biserial</td>
</tr>
<tr>
<td>Ordinal</td>
<td>Rank biserial</td>
<td>τ_b or Spearman</td>
<td>τ_b or Spearman</td>
</tr>
<tr>
<td>Continuous</td>
<td>Point biserial</td>
<td>τ_b or Spearman</td>
<td>Pearson or Spearman</td>
</tr>
</tbody>
</table>

$\phi =$ phi coefficient, $\lambda =$ Goodman and Kruskal’s lambda, $\tau_b =$ Kendall’s τ_b.

- **Dimension**: level of measurement
 - Ordinal: discrete but ordered, e.g., 0, 1, 2 for “low”, “medium”, “severe” risks
 - Nominal: discrete without any order, e.g., 0, 1, 2 for “bus”, “car”, “train” transportation

- See [Khamis, 2008] for a guide to the selection
- See [Berry et al., 2018] for extensive introduction
- See mhahsler.github.io for a list of measures in association rule mining $X \Rightarrow Y$
Linear correlation of continuous r.v.: Pearson’s \(r \)

- Bivariate analysis of joint distribution of \(X \) and \(Y \) or of a sample \((x_1, y_1), \ldots, (x_n, y_n)\)
- Sample covariance:
 \[
 s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x}) \cdot (y_i - \bar{y}) \quad \text{Cov}(X, Y) = E[(X - \mu_X) \cdot (Y - \mu_Y)]
 \]
- Apply plug-in method to correlation between \(X \) and \(Y \):
 \[
 \rho = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X) \cdot \text{Var}(Y)}} = \frac{E[(X - \mu_X) \cdot (Y - \mu_Y)]}{\sigma_X \cdot \sigma_Y}
 \]
- Pearson’s (linear/product-moment) correlation coefficient:
 \[
 r = \frac{s_{xy}}{s_x \cdot s_y} = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) \cdot (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \cdot \sum_{i=1}^{n} (y_i - \bar{y})^2}}
 \]
- Support in \([-1, 1]\) due to Schwarz’s inequality: \(|s_{xy}| \leq s_x \cdot s_y\)
- Computational cost is \(O(n)\)
Linear correlation of continuous r.v.: Pearson’s r

$$\rho = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X) \cdot \text{Var}(Y)}} = \frac{E[(X - \mu_X) \cdot (Y - \mu_Y)]}{\sigma_X \cdot \sigma_Y}$$

- Pearson’s (linear/product-moment) correlation coefficient: $[\text{support in } [-1, 1]]$

$$r = \frac{s_{xy}}{s_x \cdot s_y} = \frac{\sum_{i=1}^{n}(x_i - \bar{x}) \cdot (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n}(x_i - \bar{x})^2 \cdot \sum_{i=1}^{n}(y_i - \bar{y})^2}}$$

<table>
<thead>
<tr>
<th>r</th>
<th>Interpretation of Linear Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>Strong positive</td>
</tr>
<tr>
<td>0.5</td>
<td>Moderate positive</td>
</tr>
<tr>
<td>0.2</td>
<td>Weak positive</td>
</tr>
<tr>
<td>0.0</td>
<td>No relationship</td>
</tr>
<tr>
<td>-0.2</td>
<td>Weak negative</td>
</tr>
<tr>
<td>-0.5</td>
<td>Moderate negative</td>
</tr>
<tr>
<td>-0.8</td>
<td>Strong negative</td>
</tr>
</tbody>
</table>

Uncorrelated Positively correlated Negatively correlated
Rank correlation of continuous/ordinal r.v.: Spearman’s ρ

- Pearson's r assesses linear relationships over continuous values
- Let $\text{rank}(x)$ be the ranks of x_i's
 - For $x = 7, 3, 5$, $\text{rank}(x) = 3, 1, 2$
- Spearman’s correlation coefficient is the Pearson’s coefficient over the ranks:
 \[\rho = r(\text{rank}(x), \text{rank}(y)) = \frac{\text{Cov}(\text{rank}(X), \text{rank}(Y))}{\sqrt{\text{Var}(\text{rank}(X)) \cdot \text{Var}(\text{rank}(Y))}} \]
 - In case of no ties in x and y:
 \[\rho = 1 - \frac{6 \sum_{i=1}^{n} (\text{rank}(x)_i - \text{rank}(y)_i)^2}{n \cdot (n^2 - 1)} \]
- Spearman's correlation assesses monotonic relationships (whether linear or not)
- Computational cost is $O(n \cdot \log n)$
Rank correlation of continuous/ordinal r.v.: Kendall’s τ

- Spearman’s applies when Y (or also X) is ordinal
 - Association between age and fraction of exams passed ("0-5", "6-10", "11-15", "+15")
- Kendall’s τ_a is another (more robust) rank measure: $[support \in [-1, 1]]$
 \[
 \tau_{xy} = \frac{2 \sum_{i<j} \text{sgn}(x_i - x_j) \cdot \text{sgn}(y_i - y_j)}{n \cdot (n - 1)}
 \]

 Fraction of concordant pairs minus discordant pairs, i.e., probability of observing a difference between concordant and discordant pairs.
- Correction τ_b accounting for ties, i.e., $x_i = x_j$ or $y_i = y_j$ $[implemented \ by \ cor \ in \ R]$
 - Correction to divide by the number of pairs for which $\text{sgn}(x_i - x_j) \cdot \text{sgn}(y_i - y_j) \neq 0$
- Computational cost is $O(n^2)$

See R script
Rank correlation of continuous and binary r.v.: Somers’ D

- **X** continuous and **Y** binary.
- An asymmetric Kendall’s:

$$D = \frac{\tau_{xy}}{\tau_{yy}} = \frac{\sum_{i<j} \text{sgn}(x_i - x_j) \cdot \text{sgn}(y_i - y_j)}{\sum_{i<j} \text{sgn}(y_i - y_j)^2}$$

i.e., fraction of concordant pairs minus discordant pairs conditional to unequal values of **y**

- Example with probabilistic classifiers
 - **x** = positive prediction confidence, i.e., `predict_proba(...)[,1]` in Python
 - **y** true class
 - **D** is the Gini index of classifier performances
 - related to AUC of ROC curve:

\[
D = 2 \cdot AUC - 1 \quad AUC = \frac{D}{2} + 0.5 = \frac{\tau_{xy}}{2 \cdot \tau_{yy}} + 0.5
\]

See R script
\[Gini = D = \frac{A}{A + B} \]

\[AUC = A + \frac{1}{2} \]
Association between nominal variables: Thiel’s U

- Recall from Lesson 11

Mutual information and NMI

\[I(X, Y) = \sum_{a,b} p_{XY}(a, b) \log \frac{p_{XY}(a, b)}{p_X(a)p_Y(b)} \quad \text{NMI} = \frac{I(X, Y)}{\min \{H(X), H(Y)\}} \in [0, 1] \]

- Uncertainty coefficient (also called entropy coefficient or Thiel’s U) :

\[U_{\text{sym}} = \frac{I(X, Y)}{(H(X) + H(Y))/2} \quad U_{\text{asym}} = \frac{I(X, Y)}{H(X)} \]

where \(p_{XY} \) is the empirical joint p.m.f., and \(p_X, p_Y \) are the empirical marginal p.m.f.’s

- \(U_{\text{asym}} \) what fraction of \(X \) can be predicted by \(Y \)
Association between nominal variables: χ^2-based

- Several other measures based on Pearson χ^2 (introduced later)
 - Contingency coefficient C
 - Cramer’s V
 - ϕ coefficient (or MCC, Matthews correlation coefficient)
 - Tschuprov’s T
 - ...
Harry Khamis (2008)

Measures of Association: How to Choose?

The Measurement of Association: A Permutation Statistical Approach.

Springer.