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Condensed observations

• Probability models governs some random phenomena

• Confronted with a new phenomenon, we want to learn about the randomness associated with it

▶ Parametric (efficient) vs non-parameteric (general) methods

• Record observations x1,. . . , xn (a dataset)

• n can be large: need to condense for easy visual comprehension

• Graphical summaries:

▶ Univariate: histograms, kernel density estimates, empirical distribution functions
▶ Multi-variate: scatter plots
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The empirical CDF

• Record observations x1,. . . , xn (a dataset)
• Empirical cumulative distribution function (CDF):

Fn(x) =
|{i ∈ [1, n] | xi ≤ x}|

n
• Empirical complementary cumulative distribution function (CCDF):

F̄n(x) = 1− Fn(x)

• A r.v. X is completely characterized by its CDF FX
• Estimating FX through Fn allow for estimating other quantities by plugging Fn in the

place of FX , e.g., E [X ] as

E [X ] =
∑
a

a · P(X = a) =
∑
a

a · |{i | xi = a}|
n

=
1

n

∑
i

xi

• What about p.m.f. and d.f.?

See R script
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Barplots

• For discrete data, barplots provide frequency counts for values
▶ approximate the p.m.f. due to the law of large numbers

• For continuous data, frequency counting of distinct values do not work. Why?

See R script
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Histograms

• Histograms provide frequency counts for ranges of values:
▶ Split the support to intervals, called bins:

B1, . . . ,Bm

where the length |Bi | is called the bin width
▶ Count observations in each bin and normalize them:

Ai =
|{j ∈ [1, n] | xj ∈ Bi}|

n
≈ P(X ∈ Bi )

▶ Plot bars whose area is proportional to Ai

Ai = |Bi | · Hi Hi =
|{j ∈ [1, n] | xj ∈ Bi}|

n|Bi |

See R script
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Choice of the bin width
• Bins of equal width:

Bi = (r + (i − 1)b, r + ib] for i ∈ [1,m]

where r ≤ minimum point and b is the bin width

• Mean Integrated Square Error (MISE), for f̂ () density estimation of f ():

MISE = E [

∫
(f̂ (u)− f (u))2du] =

∫ ∫
(f̂ (u)− f (u))2(f (x))ndudx

• Scott’s normal reference rule (minimize MISE for Normal density):

b = 3.49 · s · n−1/3, where s = σ̂ =
√

1
n−1

∑n
i=1(xi − x̄)2 is the sample standard deviation
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Choice of the bin width
• b = 2 · IQR · n−1/3, where IQR = Q3 − Q1 [Freedman–Diaconis’ choice]

▶ It replaces 3.49 · s in the Scott’s rule by 2 · IQR (more robust to outlier)
▶ Q3 is 75% percentile of x1, . . . , xn
▶ Q1 is 25% percentile of x1, . . . , xn

• Variable bin width
▶ Logarithmic binning in power laws

• Alternative: number of bins given equal bin width b:
▶ m = ⌈max xi−min xi

b ⌉
▶ m = ⌈

√
n⌉

▶ m = ⌈log2 n⌉+ 1 [Sturges’ formula]
▶ Sturges’s formula:

□ assume m bins: 0, 1, . . . ,m − 1
□ assume normal distribution of true density
□ approximate normal density as Bin(n, 0.5), hence absolute frequency of i th bin is

(
m−1

i

)
□ total frequency is n =

∑m−1
i=0

(
m−1

i

)
= 2m−1, hence m = ⌈log2 n⌉+ 1

N.B. R’s hist method take bin width as a suggestion, then it rounds bins differently
See R script
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Density estimation

• Problem with histograms: as m increases, histogram becomes unusable
• Idea: estimate density function by putting a pile (of sand) around each observation
• Kernels state the shape of the pile

▶ Epanechnikov 3
4 (1− u2) for −1 ≤ u ≤ 1

▶ Triweight 35
32 (1− u2)3 for −1 ≤ u ≤ 1

▶ Normal 1√
2π
e−

1
2 u

2

for −∞ < u < ∞
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Kernel density estimation (KDE)

A Kernel is a function K : R → R such that

• K is a probability density, i.e., K (u) ≥ 0 and
∫∞
−∞ K (u)du = 1

• K is symmetric, i.e., K (−u) = K (u)

• [sometime, it is required that] K (u) = 0 for |u| > 1

A bandwidth h is a scaling factor over the support of K (from [−1, 1] to [−h, h])

• if X ∼ K , then X
h ∼ 1

hK (uh ) [Change-of-Unit rule]
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Kernel density estimation (KDE)

Let x1, . . . , xn be the observations
• K scaled and shifted at xi is

1
hK (u−xi

h ), with support [xi − h, xi + h]

The kernel density estimate is defined as:

fn,h(u) =
1

nh

n∑
i=1

K (
u − xi

h
)

• It is a probability density! [Prove it]

See R script
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KDE vs histograms

• KDE has less variability!
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Choice of the bandwidth

• Note. The choice of the kernel is not critical: different kernels give similar results

• A problem. The choice of the bandwith h is critical (and it may depend on the kernel)

• Mean Integrated Squared Error (MISE) is

E [

∫ ∞

−∞
(fn,h(u)− f (u))2du] =

∫ ∫ ∞

−∞
(fn,h,x(u)− f (u))2(f (x))ndudx

where f (x) is the true density function and observations are independent

• For f (x) being the Normal density, the MISE is minimized for

h = (
4

3
)
1
5 · s · n−

1
5 [Normal reference method]

See R script
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Kernel density estimation (KDE)

• A problem. The choice of the bandwith h is critical (and it may depend on the kernel)
• Automatic selection of h

▶ Plug-in selectors (iterative bandwith selection)
▶ Cross-validation selectors (part of data for estimation and part for evaluation)

• Another problem. When the support is finite, symmetric kernels give meaningless results
• Boundary kernels

▶ Kernel (truncation) and renormalization
▶ Linear (combination) kernel
▶ Beta boundary kernels
▶ Reflective kernels (density=0 at boundaries)

• See [Scott, 2015] for a complete book on KDE

See R script

13 / 14



Optional reference

David W. Scott (2015)

Multivariate density estimation: Theory, practice, and visualization.

John Wiley & Sons, Inc.
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