Master Program in *Data Science and Business Informatics* **Statistics for Data Science** Lesson 14 - Law of large numbers, and the central limit theorem

Salvatore Ruggieri

Department of Computer Science University of Pisa, Italy salvatore.ruggieri@unipi.it

Markov's inequality

Notation. Indicator variable: $\mathbb{1}_{X \in A}(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$

•
$$E[\mathbb{1}_{X \in A}] = \sum_{x} \mathbb{1}_{X \in A}(x) p_X(a) = \sum_{x \in A} p_X(a) = P_X(X \in A) = P(\mathbb{1}_{X \in A} = 1)$$

• Question: how much probability mass is near the expectation?

Markov's inequality. For X non-negative (i.e., P(X < 0) = 0) and $\alpha > 0$:

$$P(X \ge \alpha) \le \frac{E[X]}{\alpha}$$

Proof. Take expectations of $\alpha \mathbb{1}_{X \ge \alpha} \le X$.

For a non-negative r.v., the probability of a large value is inversely proportional to the value
 Corollary. For X non-negative, E[X] > 0 and k > 0: P(X ≥ kE[X]) ≤ 1/μ

Chebyshev's inequality

• Question: how much probability mass is near the expectation?

CHEBYSHEV'S INEQUALITY. For an arbitrary random variable Y and any a > 0: $P(|Y - E[Y]| \ge a) \le \frac{1}{a^2} Var(Y).$

Proof. Let $X = (Y - E[Y])^2$ and $\alpha = a^2$. By Markov's inequality:

$$P(|Y - E[Y]| \ge a) = P((Y - E[Y])^2 \ge a^2) \le \frac{E[(Y - E[Y])^2]}{a^2} = \frac{1}{a^2} Var(Y)$$

Chebyshev's inequality

- " $\mu \pm a$ few σ " rule: Most of the probability mass of a random variable is within a few standard deviations from its expectation!
- Let $\mu = E[Y]$ and $\sigma^2 = Var(Y) > 0$. For k > 0 (and hence $a = k\sigma > 0$):

$$P(|Y-\mu| < k\sigma) = 1 - P(|Y-\mu| \ge k\sigma) \ge 1 - rac{1}{k^2\sigma^2} Var(Y) = 1 - rac{1}{k^2}$$

- For k = 2, 3, 4, the RHS is 3/4, 8/9, 15/16
- Chebyshev's inequality is sharp when nothing is known about X, but in general it is a large bound!

See R script

Averages vary less

• Guessing the weight of a cow

• See Francis Galton (inventor of standard deviation and much more)

Expectation and variance of an average

• Let X_1, X_2, \ldots, X_n be independent r. v. for which $E[X_i] = \mu$ and $Var(X_i) = \sigma^2$

$$\bar{X}_n = \frac{X_1 + X_2 + \ldots + X_n}{n}$$

EXPECTATION AND VARIANCE OF AN AVERAGE. If \bar{X}_n is the average of *n* independent random variables with the same expectation μ and variance σ^2 , then

$$\operatorname{E}\left[\bar{X}_{n}\right] = \mu \quad \text{and} \quad \operatorname{Var}\left(\bar{X}_{n}\right) = \frac{\sigma^{2}}{n}.$$

Notice that X₁,..., X_n are not required to be identically distributed!
 See R script

The (weak) law of large numbers

• Apply Chebyshev's inequality to \bar{X}_n

$$P(|ar{X}_n - \mu| > \epsilon) \leq rac{1}{\epsilon^2} Var(ar{X}_n) = rac{\sigma^2}{n\epsilon^2}$$

• For
$$n \to \infty$$
, $\sigma^2/(n\epsilon^2) \to 0$

THE LAW OF LARGE NUMBERS. If \bar{X}_n is the average of n independent random variables with expectation μ and variance σ^2 , then for any $\varepsilon > 0$: $\lim_{n \to \infty} \mathbb{P}(|\bar{X}_n - \mu| > \varepsilon) = 0.$

- probability that \bar{X}_n is far from μ tends to 0 as $n \to \infty$! [Convergence in probability]
- It holds also if σ^2 is infinite (proof not included)
- Notice (again!) that X_1, \ldots, X_n are not required to be identically distributed!

Recovering probability of an event

Objective: Let C = (a, b], and want to know $p = P(X \in C)$

- Run *n* independent measurements
- Model the results as X_1, \ldots, X_n random variables
- Define the indicator variables, for i = 1, ..., n:

$$Y_i = \mathbb{1}_{X_i \in C} = \begin{cases} 1 & \text{if } X_i \in C \\ 0 & \text{if } X_i \notin C \end{cases}$$

• Y_i's are independent

[Propagation of independence]

- $E[Y_i] = 1 \cdot P(X_i \in C) + 0 \cdot P(X_i \notin C) = p$
- Defined $\bar{Y}_n = \frac{Y_1 + \ldots + Y_n}{n}$, by the law of large numbers:

$$\lim_{n\to\infty} P(|\bar{Y}_n-p|>\epsilon)=0$$

• Frequency counting of $v \in (a, b]$ (e.g., in histograms) is a probability estimation method!

Estimating conditional probability

Objective: estimate P(Y = y | A = a) given $(a_1, y_1), \ldots, (a_t, y_t)$ with $y \in \{0, 1, \ldots, k-1\}$

- Let $n = |\{(a_i, y_i) \mid a_i = a\}$ and $n_y = |\{(a_i, y_i) \mid a_i = a, y_i = y\}$
- Use n_y/n , the proportion of Y = y over A = a: Ok for $n \to \infty$, not for n small
- *m*-estimate:

$$\frac{n_y + mp_y}{n + m}$$

where *m* is a weight factor and $p_y = \frac{t_y}{t}$ prior probability with $t_y = |\{(a_i, y_i) \mid y_i = y\}$

• Smoothing regularization

$$\lambda(n)\frac{n_y}{n} + (1 - \lambda(n))p_y$$

where $\lambda(n) \in [0, 1]$ is increasing with n

- Interpolate P(Y = y | A = a) with P(Y = y)
- For $\lambda(n) = n/(n+m)$, we get the *m*-estimate
- Sample usage: target encoding of categorical attributes [Micci-Barreca, 2001]

See R script

Hoeffding bound

Theorem (Hoeffding bound)

If \bar{X}_n is the average of n independent r.v. with expectation μ and $P(a \le X_i \le b) = 1$, then for any $\epsilon > 0$

$$P(|ar{X}_n-\mu|\geq\epsilon)\leq 2e^{-2n\epsilon^2/(b-a)^2}$$

- For bounded support, a tight upper bound!
- When a = 0, b = 1 (e.g., Bernoulli trials):

$$P(|\bar{X}_n - \mu| \ge \epsilon) \le 2e^{-2n\epsilon^2}$$

Corollary. If \bar{X}_n is the average of n independent r.v. with expectation μ and $P(a \le X_i \le b) = 1$, then for any $n \ge 1/2\epsilon^2 \log 2/\delta$: $P(|\bar{X}_n - \mu| \le \epsilon) \ge 1 - \delta$

- $\epsilon\,$ accuracy: allowed error in estimation
- $\delta\,$ confidence: allowed probability of failure in achieving the accuracy
- E.g., recovering probability of an event: $P(|ar{Y}_n-p|\leq 0.01)\geq 0.99$ for n=3516

The central limit theorem

• Let X_1, X_2, \ldots, X_n be independent r. v. for which $E[X_i] = \mu$ and $Var(X_i) = \sigma^2$

$$\bar{X}_n = \frac{X_1 + X_2 + \ldots + X_n}{n} \quad E[\bar{X}_n] = \mu \quad Var(\bar{X}_n) = \frac{\sigma^2}{n}$$

- Can we derive the distribution of \bar{X}_n ?
- We already showed that, for $X_1 \sim N(\mu_1, \sigma_1^2)$ and $X_2 \sim N(\mu_2, \sigma_2^2)$ indepedent:

$$rac{X_1+X_2}{2} \sim N(rac{\mu_1+\mu_2}{2},rac{\sigma_1^2+\sigma_2^2}{2^2})$$

• Assume $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$:

$$ar{X}_n \sim \mathcal{N}(\mu, rac{\sigma^2}{n}) \qquad Z_n = rac{ar{X}_n - \mu}{\sigma/\sqrt{n}} = rac{ar{X}_n - E[ar{X}_n]}{\sqrt{rac{Var(ar{X}_n)}{n}}} \sim \mathcal{N}(0, 1)$$

• Interestingly, the same conclusion extends to any distribution for the X_i 's!

The central limit theorem

THE CENTRAL LIMIT THEOREM. Let X_1, X_2, \ldots be any sequence of independent identically distributed random variables with finite positive variance. Let μ be the expected value and σ^2 the variance of each of the X_i . For $n \ge 1$, let Z_n be defined by

$$Z_n = \sqrt{n} \, \frac{\bar{X}_n - \mu}{\sigma};$$

then for any number a

$$\lim_{n \to \infty} F_{Z_n}(a) = \Phi(a),$$

where Φ is the distribution function of the N(0, 1) distribution. In words: the distribution function of Z_n converges to the distribution function Φ of the standard normal distribution.

- It extends to not identically distributed r.v.'s
- Why is it so frequent to observe a normal distribution?
 - Sometime it is the average/sum effects of other variables, e.g., as in "noise"
 - ▶ This justifies the common use of it to stand in for the effects of unobserved variables

See R script and seeing-theory.brown.edu

[Lindeberg's condition]

Applications: approximating probabilities

• Let
$$X_1, \ldots, X_n \sim Exp(2)$$
, for $n = 100$

• Assume to observe realizations
$$x_1, \ldots, x_n$$
 such that $\bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i = 0.6$

• What is the probability $P(\bar{X}_n \ge 0.6)$ of observing such a value or a greater value?

Option A: Compute the distribution of \bar{X}_n

•
$$S_n = X_1 + \ldots + X_n \sim Erl(n,2)$$

• $\bar{X}_n = S_n/n$ hence by change-of-units transformation

$$F_{\bar{X}_n}(x) = F_{S_n}(n \cdot x)$$
 and $f_{\bar{X}_n}(x) = n \cdot f_{S_n}(n \cdot x)$

• and then:

$${\cal P}(ar{X}_n \geq 0.6) = 1 - {\cal F}_{ar{X}_n}(0.6) = 1 - {\cal F}_{{\cal S}_n}(n \cdot 0.6) = 1 - {
m pgamma(60, n, 2)} = 0.0279$$

 $\mu = \sigma = 1/2$

Applications: approximating probabilities

• Let
$$X_1,\ldots,X_n\sim Exp(2)$$
, for $n=100$

$$u = \sigma = 1/2$$

1

- Assume to observe realizations x_1, \ldots, x_n such that $\bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i = 0.6$
- What is the probability $P(\bar{X}_n \ge 0.6)$ of observing such a value or a greater value?

Option B: Approximate them by using the CLT

•
$$Z_n = \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$$
 implies $\bar{X}_n = \frac{\sigma}{\sqrt{n}} Z_n + \mu \sim N(\mu, \sigma^2/n)$ for $n \to \infty$

• and then:

$$P(\bar{X}_n \ge 0.6) = P(\frac{\sigma}{\sqrt{n}}Z_n + \mu \ge 0.6) = P(Z_n \ge \frac{0.6 - \mu}{\sigma/\sqrt{n}}) \approx 1 - \Phi(\frac{0.6 - 0.5}{0.5/10}) = 0.0228$$

• also, notice $X_1 + \ldots + X_n = \sqrt{n}\sigma Z_n + n\mu \sim N(n\mu, n\sigma^2)$

See R script

How large should *n* be?

- How fast is the convergence of Z_n to N(0,1)?
- The approximation might be poor when:
 - ► *n* is small
 - ► X_i is asymmetric, bimodal, or discrete
 - the value to test (0.6 in our example) is far from μ

the myth of $n \ge 30$

Daniele Micci-Barreca (2001)

A Preprocessing Scheme for High-Cardinality Categorical Attributes in Classification and Prediction Problems

SIGKDD Explor. Newsl. 3 (1), 27 – 32.