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Markov's inequality

1 ifxeA
0 ifxgA

> Ef[lxea] = 22, Ixea(X)px(a) = 2 capx(a) = Px(X € A) = P(1xea = 1)

® Question: how much probability mass is near the expectation?

Notation. Indicator variable: Ixca(x) = {

Markov’s inequality. For X non-negative (i.e., P(X < 0) =0) and a > 0:

_EX

P(X > a) ”

Proof. Take expectations of allx>q < X. O
® For a non-negative r.v., the probability of a large value is inversely proportional to the value

Corollary. For X non-negative, E[X] > 0 and k > 0: P(X > kE[X]) < %
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Chebyshev's inequality

® Question: how much probability mass is near the expectation?

CHEBYSHEV'S INEQUALITY. For an arbitrary random variable Y
and any a > 0:

P([Y —E[Y]|>a) < a%Var(Y) .

Proof. Let X = (Y — E[Y])? and a = a®. By Markov's inequality:

PY — EY] > ) = P((Y — ElY]R = 27) < LB Ly
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Chebyshev's inequality

o “y + afew ¢” rule: Most of the probability mass of a random variable is within a few
standard deviations from its expectation!

® let u=E[Y] and 02 = Var(Y) > 0. For k > 0 (and hence a = ko > 0):

1 1
P(|Y —p| < ko) =1-P(]Y — p Zka)zl——k%zVar(Y):l—ﬁ
® For k =2,3,4, the RHS is 3/4,8/9,15/16

® Chebyshev's inequality is sharp when nothing is known about X, but in general it is a
large bound!

See R script
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Averages vary less

® Guessing the weight of a cow

Penelope The Cow

¢ See Francis Galton (inventor of standard deviation and much more)
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Expectation and variance of an average

® Let Xq,Xa,...,X, be independent r. v. for which E[X;] = p and Var(X;) = o2

X :X1+X2+...+Xn

n
n

EXPECTATION AND VARIANCE OF AN AVERAGE. If X, is the average
of n independent random variables with the same expectation p and
variance o2, then

_ _ 02
E [Xn] =p  and Var(Xn) = —.

n

® Notice that Xi, ..., X, are not required to be identically distributed!
See R script
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The (weak) law of large numbers

e Apply Chebyshev's inequality to X,

P(|X L Var(X) = &
(I n—ﬂ\>€)§€7 ar( n)—p

® For n — o0, @°/(n?) — 0
THE LAW OF LARGE NUMBERS. If X, is the average of n independent
random variables with expectation x and variance o, then for any
e>0: _
lim P(|X,, —p| >¢) =0.
n—oo
e probability that X, is far from y tends to 0 as n — ool [Convergence in probability]
® It holds also if o2 is infinite (proof not included)
°

Notice (again!) that Xi,..., X, are not required to be identically distributed!
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Recovering probability of an event

Objective: Let C = (a, b], and want to know p = P(X € C)

® Run n independent measurements

® Model the results as X1, ..., X, random variables
® Define the indicator variables, for i =1,... n:
1 ifX;eC
Y"_ILXI‘EC_{ 0 ifXigC
® Y;'s are independent [Propagation of independence]

° E[Y,']:l-P(X,'E C)+0-P(X;¢C):p
e Defined Y, = % by the law of large numbers:

lim P(|Y,—p| >€¢)=0

n—oo

® Frequency counting of v € (a, b] (e.g., in histograms) is a probability estimation method!
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Estimating conditional probability

Objective: estimate P(Y = y|A = a) given (a1,y1),-..,(a:, y:) with y € {0,1,..., k -1}
e Let n=|{(aj,y;) | ai=a} and n, = [{(a;,yi) | ai = a,yi = y}
® Use mv/n, the proportion of Y =y over A = a: Ok for n — oo, not for n small

® m-estimate: n
n mp
y y

n+m
where m is a weight factor and p, = &/t prior probability with t, = |{(ai,yi) | vi = ¥}
® Smoothing regularization

A(m) 22 + (1= A(n))py

where A(n) € [0, 1] is increasing with n
> Interpolate P(Y = y|A = a) with P(Y =y)
» For A(n) = n/(n+m), we get the m-estimate
® Sample usage: target encoding of categorical attributes [Micci-Barreca, 2001]

See R script
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Hoeffding bound

Theorem (Hoeffding bound)

If X, is the average of n independent r.v. with expectation x and
P(a < X; < b) =1, then for any e > 0

P(IX, — i > &) < 2e7 /0

® For bounded support, a tight upper bound!
® When a=0,b=1 (e.g., Bernoulli trials):
P(|Xn — | > €) < 2672
Corollary. If X, is the average of nindependent r.v. with expectation y and P(a < X; < b) =1,
then for any n > 12 log2/s: P(| X, — u| <e)>1-§

€ accuracy: allowed error in estimation
6 confidence: allowed probability of failure in achieving the accuracy

® E.g., recovering probability of an event: P(]Y, — p| < 0.01) > 0.99 for n = 3516
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The central limit theorem

® Let Xq,Xa,...,X, be independent r. v. for which E[X;] = i and Var(X;) = o2

Xt Xa b+ X s _ 2
X,= Attt gy, Var(xn):"7

n

e Can we derive the distribution of X,?

® We already showed that, for X; ~ N(u1,0%) and Xo ~ N(u2,03) indepedent:
Xit+Xo N(M1+M2 U%Jra%)
2 2 722
® Assume Xi,..., X, ~ N(u,0?):
) o S
)_<n ~ N(/,L, 0-7) Zn _ Xn :u’ Xn E[Xn] ~ N(O, 1)

NN S

n

® |nterestingly, the same conclusion extends to any distribution for the X;'s!
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The central limit theorem

THE CENTRAL LIMIT THEOREM. Let Xi,Xs,... be any sequence
of independent identically distributed random variables with finite
positive variance. Let p be the expected value and o2 the variance
of each of the X;. For n > 1, let Z,, be defined by

X, — .
—

Zn =0
then for any number a

lim Fy, (a) = ®(a),

n—00

where @ is the distribution function of the N(0,1) distribution. In
words: the distribution function of Z,, converges to the distribution
function ® of the standard normal distribution.

® |t extends to not identically distributed r.v.’s [Lindeberg’s condition]
® Why is it so frequent to observe a normal distribution?

» Sometime it is the average/sum effects of other variables, e.g., as in “noise”

» This justifies the common use of it to stand in for the effects of unobserved variables

See R script and seeing-theory.brown.edu
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Applications: approximating probabilities

Let Xi,..., X, ~ Exp(2), for n =100 h=0c=
Assume to observe realizations xi, ..., x, such that x, = %27:1 x; = 0.6
What is the probability P(X, > 0.6) of observing such a value or a greater value?

Option A: Compute the distribution of X,

Sp=Xi+ ...+ Xy~ Erl(n,2)

X, = Sn/n hence by change-of-units transformation
F)-(n(x) = Fs,(n-x) and f)"(,,(x) =n-fs,(n-x)
and then:

P(X,>0.6) =1— Fg (0.6) =1— Fs,(n-0.6) = 1 — pganma(60, n, 2) = 0.0279

1/2
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Applications: approximating probabilities

Let Xi,..., X, ~ Exp(2), for n =100

Assume to observe realizations xi, ..., x, such that X, = %Z,’-’:l xi = 0.6

p=o =12

What is the probability P()_<,, > 0.6) of observing such a value or a greater value?

Option B: Approximate them by using the CLT

o Z, =%k  N(0,1) implies X, = T Zn+ p~ N(,/n)

LN vn
and then:
P(Xy > 0.6) = P(-2_Zy+ 1> 0.6) = P(Zy > 20 "My n1 =
vn o/vn
also, notice X1 + ...+ X, = /noZ, + nu ~ N(nu, no?)
See R script

&(

0.6 —0.5

0.5/10

for n = oo

) == 0.0228
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How large should n be?

® How fast is the convergence of Z, to N(0,1)?
® The approximation might be poor when:

» nis small the myth of n > 30
» X; is asymmetric, bimodal, or discrete
» the value to test (0.6 in our example) is far from p
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https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/34906.pdf

Optional reference

[3 Daniele Micci-Barreca (2001)
A Preprocessing Scheme for High-Cardinality Categorical Attributes in Classification and Prediction
Problems
SIGKDD Explor. Newsl. 3 (1), 27 — 32.
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