
Master Program in Data Science and Business Informatics

Statistics for Data Science
Lesson 14 - Law of large numbers, and the central limit theorem

Salvatore Ruggieri

Department of Computer Science
University of Pisa, Italy

salvatore.ruggieri@unipi.it

1 / 16

mailto:salvatore.ruggieri@unipi.it


Markov’s inequality

Notation. Indicator variable: 1X∈A(x) =

{
1 if x ∈ A
0 if x ̸∈ A

▶ E [1X∈A] =
∑

x 1X∈A(x)pX (a) =
∑

x∈A pX (a) = PX (X ∈ A) = P(1X∈A = 1)

• Question: how much probability mass is near the expectation?

Markov’s inequality. For X non-negative (i.e., P(X < 0) = 0) and α > 0:

P(X ≥ α) ≤ E [X ]

α

Proof. Take expectations of α1X≥α ≤ X . □

• For a non-negative r.v., the probability of a large value is inversely proportional to the value

Corollary. P(X ≥ kE [X ]) ≤ 1
k for k ≥ 1
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Chebyshev’s inequality

• Question: how much probability mass is near the expectation?

Proof. Let X = (Y − E [Y ])2 and α = a2. By Markov’s inequality:

P(|Y − E [Y ]| ≥ a) = P((Y − E [Y ])2 ≥ a2) ≤ E [(Y − E [Y ])2]

a2
=

1

a2
Var(Y )

□

3 / 16



Chebyshev’s inequality

• “µ ± a few σ” rule: Most of the probability mass of a random variable is within a few
standard deviations from its expectation!

• Let µ = E [Y ] and σ2 = Var(Y ). For a = kσ:

P(|Y − µ| < kσ) = 1− P(|Y − µ| ≥ kσ) ≥ 1− 1

k2σ2
Var(Y ) = 1− 1

k2

• For k = 2, 3, 4, the RHS is 3/4, 8/9, 15/16

• Chebyshev’s inequality is sharp when nothing is known about X , but in general it is a
large bound!

See R script
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Averages vary less

• Guessing the weight of a cow

• See Francis Galton (inventor of standard deviation and much more)
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Expectation and variance of an average

• Let X1,X2, . . . ,Xn be independent r. v. for which E [Xi ] = µ and Var(Xi ) = σ2

X̄n =
X1 + X2 + . . .+ Xn

n

• Notice that X1, . . . ,Xn are not required to be identically distributed!

See R script
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The (weak) law of large numbers

• Apply Chebyshev’s inequality to X̄n

P(|X̄n − µ| > ϵ) ≤ 1

ϵ2
Var(X̄n) =

σ2

nϵ2

• For n → ∞, σ2/(nϵ2) → 0

• probability that X̄n is far from µ tends to 0 as n → ∞! [Convergence in probability]

• It holds also if σ2 is infinite (proof not included)

• Notice (again!) that X1, . . . ,Xn are not required to be identically distributed!
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Recovering probability of an event

• Let C = (a, b], and want to know p = P(X ∈ C )

• Run n independent measurements

• Model the results as X1, . . . ,Xn random variables

• Define the indicator variables, for i = 1, . . . , n:

Yi = 1Xi∈C =

{
1 if Xi ∈ C
0 if Xi ̸∈ C

• Yi ’s are independent [Propagation of independence]

• E [Yi ] = 1 · P(Xi ∈ C ) + 0 · P(Xi ∈ C ) = p

• Defined Ȳn = Y1+...+Yn
n , by the law of large numbers:

lim
n→∞

P(|Ȳn − p| > ϵ) = 0

• Frequency counting (e.g., in histograms) is a probability estimation method!
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Estimating conditional probability

Objective: estimate P(Y = y |A = a) given (a1, y1), . . . , (at , yt) with y ∈ {0, 1, . . . , k − 1}
• Let n = |{(ai , yi ) | ai = a} and ny = |{(ai , yi ) | ai = a, yi = y}
• Use ny/n, the proportion of Y = y over A = a: Ok for n → ∞, not for n small

• m-estimate:
ny +mpy
n +m

where m is a weight factor and py = ty/t prior probability with ty = |{(ai , yi ) | yi = y}
• Smoothing regularization

λ(n)
ny
n

+ (1− λ(n))py

where λ(n) ∈ [0, 1] is increasing with n
▶ Interpolate P(Y = y |A = a) with P(Y = y)
▶ For λ(n) = n/(n+m), we get the m-estimate

• Sample usage: target encoding of categorical attributes [Micci-Barreca, 2001]

See R script
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Hoeffding bound

Theorem (Hoeffding bound)

If X̄n is the average of n independent r.v. with expectation µ and
P(a ≤ Xi ≤ b) = 1, then for any ϵ > 0

P(|X̄n − µ| ≥ ϵ) ≤ 2e
−2nϵ2/(b−a)2

• For bounded support, a tight bound!

• When a = 0, b = 1 (e.g., Bernoulli trials):

P(|X̄n − µ| ≥ ϵ) ≤ 2e−2nϵ2

Corollary. For n ≥ 1/2ϵ2 log 2/δ: P(|X̄n − µ| ≤ ϵ) ≤ 1− δ

ϵ accuracy: allowed error in estimation
δ confidence: allowed probability of failure in achieving the accuracy
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The central limit theorem

• Let X1,X2, . . . ,Xn be independent r. v. for which E [Xi ] = µ and Var(Xi ) = σ2

X̄n =
X1 + X2 + . . .+ Xn

n
E [X̄n] = µ Var(X̄n) =

σ2

n

• Can we derive the distribution of X̄n?
• For Y1 ∼ N(µ1, σ

2
1) and Y2 ∼ N(µ2, σ

2
2) indepedent:

Y1 + Y2

2
∼ N(

µ1 + µ2

2
,
σ2
1 + σ2

2

22
)

• Assume X1, . . . ,Xn ∼ N(µ, σ2):

X̄n ∼ N(µ,
σ2

n
) Zn =

X̄n − µ

σ/
√
n

=
X̄n − E [X̄n]√

Var(X̄n)
n

∼ N(0, 1)

• OK, does it generalize to any distribution? Yes!
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The central limit theorem

• It extends to not identically distributed r.v.’s [Lindeberg’s condition]
• Why is it so frequent to observe a normal distribution?

▶ Sometime it is the average/sum effects of other variables, e.g., as in “noise”
▶ This justifies the common use of it to stand in for the effects of unobserved variables

See R script and seeing-theory.brown.edu
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Applications: approximating probabilities

• Let X1, . . . ,Xn ∼ Exp(2), for n = 100 µ = σ = 1/2

• Assume to observe realizations x1, . . . , xn such that x̄n = 1
n

∑n
i=1 xi = 0.6

• What is the probability P(X̄n ≥ 0.6) of observing such a value or a greater value?

Option A: Compute the distribution of X̄n

• Sn = X1 + . . .+ Xn ∼ Erl(n, 2)

• X̄n = Sn/n hence by change-of-units transformation

FX̄n
(x) = FSn(n · x) and fX̄n

(x) = n · fSn(n · x)

• and then:

P(X̄n ≥ 0.6) = 1− FX̄n
(0.6) = 1− FSn(n · 0.6) = 1− pgamma(60, n, 2) = 0.0279
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Applications: approximating probabilities

• Let X1, . . . ,Xn ∼ Exp(2), for n = 100 µ = σ = 1/2

• Assume to observe realizations x1, . . . , xn such that x̄n = 1
n

∑n
i=1 xi = 0.6

• What is the probability P(X̄n ≥ 0.6) of observing such a value or a greater value?

Option B: Approximate them by using the CLT

• Zn = X̄n−µ
σ/

√
n
∼ N(0, 1) implies X̄n = σ√

n
Zn + µ ∼ N(µ, σ2/n) for n → ∞

• and then:

P(X̄n ≥ 0.6) = P(
σ√
n
Zn + µ ≥ 0.6) = P(Zn ≥ 0.6− µ

σ/
√
n

) ≈ 1− Φ(
0.6− 0.5

0.5/10
) == 0.0228

• also, notice X1 + . . .+ Xn =
√
nσZn + nµ ∼ N(nµ, nσ2)

See R script
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How large should n be?

• How fast is the convergence of Zn to N(0, 1)?
• The approximation might be poor when:

▶ n is small the myth of n ≥ 30
▶ Xi is asymmetric, bimodal, or discrete
▶ the value to test (0.6 in our example) is far from µ
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https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/34906.pdf


Optional reference

Daniele Micci-Barreca (2001)

A Preprocessing Scheme for High-Cardinality Categorical Attributes in Classification and Prediction
Problems

SIGKDD Explor. Newsl. 3 (1), 27 – 32.
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