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Simulation

• Not all problems can be solved with calculus!
• Complex interactions among random variables can be simulated
• Generated random values are called realizations

• Basic issue: how to generate realizations?
▶ The Galton Board
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Simulation

• Not all problems can be solved with calculus!

• Complex interactions among random variables can be simulated

• Generated random values are called realizations
• Basic issue: how to generate realizations?

▶ in R: rnorm(5), rexp(2), rbinom(. . .), . . .

• Ok, but how do they work?

• Assumption: we are only given runif ()!

• Problem: derive all the other random generators
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Simulation: discrete distributions

• For X1, . . . ,Xn ∼ Ber(p) i.i.d., we have:
∑n

i=1 Xi ∼ Binom(n, p)

See R script
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X ∼ Cat(p)

• Alternative definition: pX (a) = pa · (1− p)1−a for a ∈ {0, 1}
• Categorical distribution generalizes to n ≥ 2 possible values

Categorical distribution

A discrete random variable X has a Categorical distribution with parameters
p0, . . . , pnC−1 where

∑
i pi = 1 and pi ∈ [0, 1] if its p.m.f. is given by:

pX (i) = P(X = i) = pi for i = 0, . . . , nC − 1

• Alternative definition: pX (a) =
∏

i p
1a==i for a = 0, . . . , nC − 1
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X ∼ Mult(n,p)

• X ∼ Bin(n, p) models the number of successes in n Bernoulli trials
• Intuition: for X1,X2, . . . ,Xn i.i.d. Xi ∼ Ber(p): X =

∑n
i=1 Xi ∼ Bin(n, p)

• X ∼ Mult(n,p) models the number of categories in n Categorical trials
• Intuition: for X1,X2, . . . ,Xn such that Xi ∼ Cat(p) and independent (i.i.d.), define:

Y1 =
n∑

i=1

1Xi==0 ∼ Bin(n, p0), . . . ,YnC−1 =
n∑

i=1

1Xi==nC−1 ∼ Bin(n, pnC−1)

X = (Y1, . . . ,YnC−1) ∼ Mult(n,p)

Multinomial distribution

A discrete random variable X = (Y1, . . . ,YnC−1 has a Multinomial distribution with
parameters p0, . . . , pnC−1 where

∑
i pi = 1 and pi ∈ [0, 1] if its p.m.f. is given by:

pX (i0, . . . , inC−1) = P(X = (i0, . . . , inC−1)) =
n!

i0!i1! . . . inC−1!
pi00 p

i1
1 . . . p

inC−1

nC−1
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X ∼ Mult(n,p)

• Example: student selection from a population with:
▶ 60% undergraduates
▶ 30% graduate
▶ 10% PhD students

• Assume n = 20 students are randomly selected

• X ∼ (Y1,Y2,Y3) where:
▶ Y1 number of undergraduate students
▶ Y2 number of graduate students
▶ Y3 number of PhD students

• P(X = (10, 6, 4)) = 20!
10!6!4! (0.6)

10(0.3)6(0.1)4 = 9.6%

See R script
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Simulation: continuous distributions

• F : R → [0, 1] and F−1 : [0, 1] → R
▶ E.g., F strictly increasing
▶ N.B., the textbook notation for F−1 is F inv

• For X ∼ U(0, 1) and 0 ≤ b ≤ 1
P(X ≤ b) = b

• then, for b = F (x)
P(X ≤ F (x)) = F (x)

• and then by inverting
P(F−1(X ) ≤ x) = F (x)

• In summary:
F−1(X ) ∼ F for X ∼ U(0, 1)

See R script
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Common distributions
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Optional reference

William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery (2007)

Numerical Recipes - The Art of Scientific Computing

Chapter 7: Random Numbers

online book
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http://numerical.recipes/

