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® Not all problems can be solved with calculus!
® Complex interactions among random variables can be simulated
® Generated random values are called realizations
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https://en.wikipedia.org/wiki/Galton_board
https://upload.wikimedia.org/wikipedia/commons/transcoded/d/dc/Galton_box.webm/Galton_box.webm.360p.vp9.webm

Not all problems can be solved with calculus!
® Complex interactions among random variables can be simulated
® Generated random values are called realizations
Basic issue: how to generate realizations?
» The Galton Board
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Not all problems can be solved with calculus!

Complex interactions among random variables can be simulated

Generated random values are called realizations

Basic issue: how to generate realizations?
» in R: rnorm(5), rexp(2), rbinom(...), . ..
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Not all problems can be solved with calculus!

Complex interactions among random variables can be simulated

Generated random values are called realizations

Basic issue: how to generate realizations?
» in R: rnorm(5), rexp(2), rbinom(...), . ..

Ok, but how do they work?

Assumption: we are only given runif()!
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Not all problems can be solved with calculus!

Complex interactions among random variables can be simulated

Generated random values are called realizations

Basic issue: how to generate realizations?
» in R: rnorm(5), rexp(2), rbinom(...), . ..

Ok, but how do they work?

Assumption: we are only given runif()!

Problem: derive all the other random generators
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Simulation: discrete distributions

Bernoulli random variables

Suppose U has a U(0,1) distribution. To construct a Ber(p) random variable
for some 0 < p < 1, we define

Yo 1 it: U < p,
0 ifU>p
so that

1)=PWU < p) =p,
PX=0)=PU=p)=1-0p.

This random variable X has a Bernoulli distribution with parameter p.
® For Xi,...,X, ~ Ber(p) i.i.d., we have: Y7 ; X; ~ Binom(n, p)
See R script
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DEFINITION. A discrete random variable X has a Bernoulli distri-
bution with parameter p, where 0 < p < 1, if its probability mass
function is given by

px(1)=P(X =1)=p and px(0)=PX =0)=1-—p.

We denote this distribution by Ber(p).

e Alternative definition: px(a) = p?- (1 — p)!=2 for a € {0, 1}
® (Categorical distribution generalizes to n > 2 possible values

Categorical distribution

A discrete random variable X has a Categorical distribution with parameters
Po, - -, Pnc—1 Where Y. p; =1 and p; € [0, 1] if its p.m.f. is given by:

px(i)=P(X=i)=p; fori=0,...,nc—1

® Alternative definition: px(a) = []; pt==—= fora=0,...,nc — 1 616



X ~ Mult(n, p)

X ~ Bin(n, p) models the number of successes in n Bernoulli trials

Intuition: for X1, Xa,..., X, i.i.d. X; ~ Ber(p): X =3__, X; ~ Bin(n, p)

X ~ Mult(n,p) models the number of categories in n Categorical trials

Intuition: for X1, Xy, ..., X, such that X; ~ Cat(p) and independent (i.i.d.), define:

Y1 = Z Ix,——o0 ~ Bin(n, po),..., Ync—1 = Z Lx,==nc—1 ~ Bin(n, pp._1)
-1

i=1

X =(Y1,..., Yne—1) ~ Mult(n,p)

Multinomial distribution

A discrete random variable X = (Y1, ..., Ya.—1 has a Multinomial distribution with
parameters po, . .., pnc—1 Where > . pi = 1 and p; € [0, 1] if its p.m.f. is given by:

n! o i
lo i1 nc—1
: [POPL -+ Pnc—1

px(ios -+ -5 inc—1) = P(X = (fo, - -, inc—1)) = 10“1'7,1
L I
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X ~ Mult(n, p)

® Example: student selection from a population with:

» 60% undergraduates
» 30% graduate
» 10% PhD students

® Assume n = 20 students are randomly selected
o X ~ (Y17 Y, Y3) where:
» Y1 number of undergraduate students

» Y2 number of graduate students

» Y3 number of PhD students
* P(X =(10,6,4)) = 122(0.6)1°(0.3)5(0.1)* = 9.6%

See R script
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Simulation: continuous distributions

e F:R—[0,1]and F71:]0,1] = R
» E.g., F strictly increasing
» N.B., the textbook notation for F~1 is Finv
® For X ~ U(0,1) and 0 < b <1
P(X<b)=b

See R script y - f(x)
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Simulation: continuous distributions

e F:R—[0,1]and F71:]0,1] = R
» E.g., F strictly increasing
» N.B., the textbook notation for F~1 is Finv
® For X ~ U(0,1) and 0 < b <1
P(X<b)=b
e then, for b = F(x)
P(X < F(x)) = F(x)

See R script y - f(x)
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Simulation: continuous distributions

e F:R—[0,1]and F71:]0,1] = R
» E.g., F strictly increasing
» N.B., the textbook notation for F~1 is Finv
® For X ~ U(0,1) and 0 < b <1
P(X<b)=b
e then, for b = F(x)
P(X < F(x)) = F(x)
® and then by inverting
P(FHX) < x) = F(x)

See R script y - f(x)
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Simulation: continuous distributions

e F:R—[0,1]and F71:]0,1] = R
» E.g., F strictly increasing
» N.B., the textbook notation for F~1 is Finv
For X ~ U(0,1) and 0 < b <1
P(X<b)=b
then, for b = F(x)
P(X < F(x)) = F(x)
and then by inverting
P(FHX) < x) = F(x)
® In summary:
F~1(X) ~ F for X ~ U(0,1)

See R script
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Common distributions

min X, Negative a=8 Beta-binomial
binomial (n, @, B)

(n, p)
- o Hypergeometric
IA=n(1-p) P @ (M,N, K)
| n—oo a+f—o —

Binomial “"p=MI/N,n=K
(n, p) N—o

Relationships among common distributions. Solid lines represent transformations and special
cases, dashed lines represent limits. Adapted from Leemis (1986).
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Optional reference

D William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery (2007)
Numerical Recipes - The Art of Scientific Computing
Chapter 7: Random Numbers
online book
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