Master Program in *Data Science and Business Informatics* **Statistics for Data Science** Lesson 11 - Moments. Functions of random variables

Salvatore Ruggieri

Department of Computer Science University of Pisa, Italy salvatore.ruggieri@unipi.it

Moments

- Let X be a continuous random variable with density function f(x)
- *k*th moment of *X*, if it exists, is:

$$E[X^k] = \int_{-\infty}^{\infty} x^k f(x) dx$$

- $\mu = E[X]$ is the first moment of X
- *k*th central moment of X is:

$$\mu_k = E[(X-\mu)^k] = \int_{-\infty}^{\infty} (x-\mu)^k f(x) dx$$

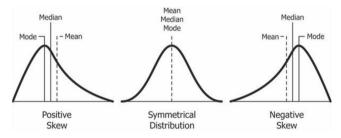
• $\sigma = \sqrt{E[(X - \mu)^2]}$ standard deviation is the square root of the second central moment • k^{th} standardized moment of X is:

$$\tilde{\mu}_k = \frac{\mu_k}{\sigma^k} = E\left[\left(\frac{X-\mu}{\sigma}\right)^k\right]$$

Skewness

•
$$\tilde{\mu}_1 = E[(X-\mu)]/\sigma = 0$$
 since $E[X-\mu] = 0$

- $\tilde{\mu}_2 = E[(X-\mu)^2]/\sigma^2 = 1$ since $\sigma^2 = E[(X-\mu)^2]$
- $\tilde{\mu}_3 = E[(X-\mu)^3]/\sigma^3$ [(Pearson's moment) coefficient of skewness]
- Skewness indicates direction and magnitude of a distribution's deviation from symmetry

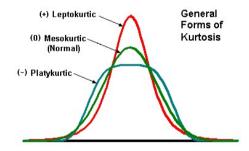


• E.g., for $X \sim Exp(\lambda)$, $\tilde{\mu}_3 = 2$

Prove it!

Kurtosis

- $\tilde{\mu}_4 = E[(\frac{X-\mu}{\sigma})^4]$
- For $X \sim N(\mu, \sigma)$, $\tilde{\mu}_4 = 3$
- Kurtosis is a measure of the dispersion of X around the two values $\mu\pm\sigma$



[(Pearson's moment) coefficient of kurtosis]

 $\tilde{\mu}_4 - 3$ is called kurtosis in excess

- $\tilde{\mu}_4 > 3$ Leptokurtic (slender) distribution has fatter tails. May have outlier problems.
- $\tilde{\mu}_4 < 3$ Platykurtic (broad) distribution has thinner tails

See R script

Functions of random variables: expectation

- $V = \pi H R^2$ be the volume of a vase of height H and radius R
- $g(H, R) = \pi H R^2$ is a random variable (function of random variables)
- $P_V(V=3) = P_{HR}(\pi HR^2 = 3)$
- How to calculate E[V] for $H \perp R$?

$$E[V] = E[\pi HR^2] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \pi hr^2 f_H(h) f_R(r) dh dr$$

TWO-DIMENSIONAL CHANGE-OF-VARIABLE FORMULA. Let X and Y be random variables, and let $g : \mathbb{R}^2 \to \mathbb{R}$ be a function. If X and Y are *discrete* random variables with values a_1, a_2, \ldots and b_1, b_2, \ldots , respectively, then

$$\operatorname{E}\left[g(X,Y)\right] = \sum_{i} \sum_{j} g(a_i, b_j) \operatorname{P}(X = a_i, Y = b_j).$$

If X and Y are *continuous* random variables with joint probability density function f, then

$$\mathbf{E}\left[g(X,Y)\right] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f(x,y) \, \mathrm{d}x \, \mathrm{d}y$$

Linearity of expectations

Theorem. For X and Y random variables, and $s, t \in \mathbb{R}$:

$$E[rX + sY + t] = rE[X] + sE[Y] + t$$

Proof. (discrete case)

$$E[rX + Ys + t] = \sum_{a} \sum_{b} (ra + sb + t)P(X = a, Y = b)$$

= $\left(r\sum_{a} \sum_{b} aP(X = a, Y = b)\right) + \left(s\sum_{a} \sum_{b} bP(X = a, Y = b)\right) + \left(t\sum_{a} \sum_{b} P(X = a, Y = b)\right)$
= $\left(r\sum_{a} aP(X = a)\right) + \left(s\sum_{b} bP(Y = b)\right) + t = rE[X] + sE[Y] + t$

Corollary. $E[a_0 + \sum_{i=1}^n a_i X_i] = a_o + \sum_{i=1}^n a_i E[X_i]$

Corollary. $X \le Y$ implies $E[X] \le E[Y]$ **Proof.** $Z = Y - X \ge 0$ implies $E[Z] = E[Y] - E[X] \ge 0$, i.e., $E[Y] \ge E[X]$.

Applications

- Expectation of some discrete distributions
 - $X \sim Ber(p)$ E[X] = p
 - $X \sim Bin(n, p)$ $E[X] = n \cdot p$
 - $\square \text{ Because } X = \sum_{i=1}^{n} X_i \text{ for } X_1, \dots, X_n \sim Ber(p)$
 - $X \sim Geo(p)$ $E[X] = \frac{1}{p}$

►
$$X \sim NBin(n, p)$$
 $E[X] = \frac{n \cdot (1-p)}{p}$
□ Because $X = \sum_{i=1}^{n} X_i - n$ for $X_1, \dots, X_n \sim Geo(p)$

• Expectation of some continuous distributions

$$\begin{array}{l} \blacktriangleright X \sim Exp(\lambda) & E[X] = \frac{1}{\lambda} \\ \blacktriangleright X \sim Erl(n,\lambda) & E[X] = \frac{n}{\lambda} \\ \Box \text{ Because } X = \sum_{i=1}^{n} X_i \text{ for } X_1, \dots, X_n \sim Exp(\lambda) \end{array}$$

Expectation of product and quotients

Theorem. For $X \perp Y$, we have: E[XY] = E[X]E[Y]

PROPAGATION OF INDEPENDENCE. Let X_1, X_2, \ldots, X_n be independent random variables. For each i, let $h_i : \mathbb{R} \to \mathbb{R}$ be a function and define the random variable

 $Y_i = h_i(X_i).$

Then Y_1, Y_2, \ldots, Y_n are also independent.

Corollary. For $X \perp Y$ and $Y \ge 0$, we have: $E[X/Y] \ge E[X]/E[Y]$ *Proof.* $X \perp Y$ implies $X \perp 1/Y$. By theorem above:

 $E[X/Y] = E[X \cdot 1/Y] = E[X]E[1/Y]$

and then by Jensen's inequality $E[X/Y] \ge E[X]/E[Y]$ since 1/y is convex for $y \ge 0$. **Exercise at home.** Show that E[X/Y] = E[X]/E[Y] is a false claim. Prove it!

Law of iterated expectations

Conditional expectation

$$E[X|Y = b] = \sum_{i} a_{i} p_{X|Y}(a_{i}|b) \qquad E[X|Y = y] = \int_{-\infty}^{\infty} x f_{X|Y}(x|y) dx$$

- **Def.** $E_Y[E[X|Y]] = \sum_j E[X|Y = b_j]p_Y(b_j)$ and $E_Y[E[X|Y]] = \int_{-\infty}^{\infty} E[X|Y = y]f_Y(y)dy$
- Theorem. (Law of iterated expectations)

$$E_Y[E[X|Y]] = E[X]$$

Proof. (X, Y discrete random variables)

$$E_{Y}[E[X|Y]] = \sum_{j} \sum_{i} a_{i} p_{X|Y}(a_{i}|b_{j}) p_{Y}(b_{j}) = \sum_{j} \sum_{i} a_{i} p_{XY}(a_{i}, b_{j}) = \sum_{i} a_{i} p_{X}(a_{i}) = E[X]$$

Variance of the sum and Covariance

$$Var(X + Y) = E[(X + Y - E[X + Y])^{2}] = E[((X - E[X]) + (Y - E[Y]))^{2}]$$

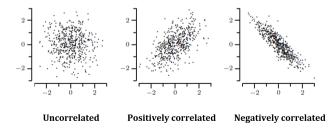
$$= E[(X - E[X])^{2}] + E[(Y - E[Y])^{2}] + 2E[(X - E[X])(Y - E[Y])]$$

$$=$$
 Var(X) + Var(Y) + 2Cov(X, Y)

Covariance

The covariance Cov(X, Y) of two random variables X and Y is the number:

Cov(X, Y) = E[(X - E[X])(Y - E[Y])]



Covariance

Theorem. Cov(X, Y) = E[XY] - E[X]E[Y]

- If X and Y are independent, Cov(X, Y) = 0 and Var(X + Y) = Var(X) + Var(Y)
- But there are X and Y uncorrelated (ie., Cov(X, Y) = 0) that are dependent!
- Variances of some discrete distributions

•
$$X \sim Ber(p)$$
 $Var(X) = p(1-p)$

•
$$X \sim Bin(n,p)$$
 $Var(X) = np(1-p)$

 \Box Because $X = \sum_{i=1}^{n} X_i$ for $X_1, \ldots, X_n \sim Ber(p)$ and independent

- $X \sim Geo(p)$ $Var(X) = \frac{1-p}{p^2}$
- $X \sim NBin(n,p)$ $Var(X) = n \frac{1-p}{p^2}$

 \square Because $X = \sum_{i=1}^n X_i - n$ for $X_1, \ldots, X_n \sim \textit{Geo}(p)$ and independent

• Variances of some continuous distributions

•
$$X \sim Exp(\lambda)$$
 $Var(X) = 1/\lambda^2$

•
$$X \sim Erl(n, \lambda)$$
 $Var(X) = \frac{n}{\lambda^2}$

 \square Because $X = \sum_{i=1}^{n} X_i$ for $X_1, \ldots, X_n \sim Exp(\lambda)$ and independent

COVARIANCE UNDER CHANGE OF UNITS. Let X and Y be two random variables. Then $\mathrm{Cov}(rX+s,tY+u)=rt\,\mathrm{Cov}(X,Y)$

for all numbers r, s, t, and u.

- Hence, $Var(rX + sY + t) = r^2 Var(X) + s^2 Var(Y) + 2rsCov(X, Y)$
- Covariance depends on the units of measure!

DEFINITION. Let X and Y be two random variables. The correlation coefficient $\rho(X, Y)$ is defined to be 0 if $\operatorname{Var}(X) = 0$ or $\operatorname{Var}(Y) = 0$, and otherwise $\rho(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}.$

- Correlation coefficient is *dimensionless* (not affected by change of units)
 - E.g., if X and Y are in Km, then Cov(X, Y), Var(X) and Var(Y) are in Km²

 $-1 \leq
ho(X,Y) \leq 1$

• The bounds are derived from the **Schwarz's inequality**:

 $E[|XY|] \le \sqrt{E[X^2]} \sqrt{E[Y^2]}$

Proof. For any $u, w \in \mathbb{R}$, we have $2|uw| \le u^2 + w^2$. Therefore, $2|UW| \le U^2 + W^2$ for r.v.'s U and V. By defining $U = \frac{x}{\sqrt{E[X^2]}}$ and $W = \frac{Y}{\sqrt{E[Y^2]}}$ (*), we have $\frac{2^{XY}}{\sqrt{E[X^2]}\sqrt{E[Y^2]}} \le \frac{x^2}{E[X^2]} + \frac{Y^2}{E[Y^2]}$. Taking the expectations, we conclude: $\frac{2^{E[XY]}}{\sqrt{E[X^2]}\sqrt{E[Y^2]}} \le 2$. (*) The case $E[X^2] = 0$ or $E[Y^2] = 0$ is left as an exercise.

Sum of independent random variables

• For
$$X \sim F_X$$
 and $Y \sim F_Y$, let $Z = X + Y$. We know

 $E[Z] = E[X] + E[Y] \qquad Var(Z) = Var(X) + Var(Y) + 2Cov(X, Y)$

- What is the distribution function of Z when $X \perp Y$?
- Examples:
 - For $X \sim Bin(n, p)$ and $Y \sim Bin(m, p)$, $Z \sim Bin(n + m, p)$
 - For $X \sim Geo(p)$ (days radio 1 breaks) and $Y \sim Geo(p)$ (days radio 2 breaks):

$$p_Z(X+Y=k) = \sum_{l=1}^{k-1} p_X(l) \cdot p_Y(k-l) = (k-1)p^2(1-p)^{k-2}$$

See Lesson 04 and Lesson 08 for convolution formulas

ADDING TWO INDEPENDENT DISCRETE RANDOM VARIABLES. Let X and Y be two independent discrete random variables, with probability mass functions p_X and p_Y . Then the probability mass function p_Z of Z = X + Y satisfies

$$p_Z(c) = \sum_j p_X(c - b_j) p_Y(b_j),$$
14/20

Sum of two Normal random variables

Theorem. If $X \sim N(\mu_X, \sigma_X^2)$ and $Y \sim N(\mu_Y, \sigma_Y^2)$ and $X \perp Y$, then:

$$Z = X + Y \sim N(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$$

Proof. See [T, Sect. 11.2]

- In general: $Z = aX + bY + c \sim N(a\mu_X + b\mu_Y + c, a^2\sigma_X^2 + b^2\sigma_Y^2)$
- The converse of the theorem also holds: [Lévy-Cramér theorem]
 - If $X \perp Y$ and Z = X + Y is normally distributed, then X and Y follow a normal distribution.

Extremes of independent random variables

THE DISTRIBUTION OF THE MAXIMUM. Let X_1, X_2, \ldots, X_n be n independent random variables with the same distribution function F, and let $Z = \max\{X_1, X_2, \ldots, X_n\}$. Then

 $F_Z(a) = (F(a))^n.$

•
$$P(Z \le a) = P(X_1 \le a, ..., X_n \le a) = \prod_{i=1}^n P(X_i \le a) = ((F(a))^n)$$

• Example: maximum water level over 365 days

THE DISTRIBUTION OF THE MINIMUM. Let X_1, X_2, \ldots, X_n be n independent random variables with the same distribution function F, and let $V = \min\{X_1, X_2, \ldots, X_n\}$. Then

$$F_V(a) = 1 - (1 - F(a))^n.$$

•
$$P(V \le a) = 1 - P(X_1 > a, ..., X_n > a) = 1 - \prod_{i=1}^n (1 - P(X_i \le a)) = 1 - ((1 - F(a))^n)$$

Product and quotient of independent random variables

PRODUCT OF INDEPENDENT CONTINUOUS RANDOM VARIABLES. Let X and Y be two independent continuous random variables with probability densities f_X and f_Y . Then the probability density function f_Z of Z = XY is given by

$$f_Z(z) = \int_{-\infty}^{\infty} f_Y\left(\frac{z}{x}\right) f_X(x) \frac{1}{|x|} \, \mathrm{d}x$$

for $-\infty < z < \infty$.

QUOTIENT OF INDEPENDENT CONTINUOUS RANDOM VARIABLES. Let X and Y be two independent continuous random variables with probability densities f_X and f_Y . Then the probability density function f_Z of Z = X/Y is given by

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(zx) f_Y(x) |x| \, \mathrm{d}x$$

for $-\infty < z < \infty$.

• $X, Y \sim N(0,1)$ independent, $Z = X/Y \sim Cau(0,1)$ where:

$$f_Z(x) = \frac{1}{\pi(1+x^2)}$$

Kullback-Leibler divergence

KL divergence

For X, Y discrete random variables with p.m.f. p_X and p_Y :

$$D(X \parallel Y) = \sum_{a} p_X(a) \log \frac{p_X(a)}{p_Y(a)} = H(X, Y) - H(X)$$

where $H(X) = -\sum_{a} p_X(a) \log p_X(a)$ and $H(X; Y) = -\sum_{a} p_X(a) \log p_Y(a)$

- Measure how distribution of Y (model) can reconstruct the distribution of X (data)
 - ► Also called: relative entropy or information gain of X w.r.t. Y
 - H(X) is the entropy of X, and H(X, Y) is the **cross entropy** of X w.r..t Y
 - H(X; Y) is the "information" or "uncertainty" or "loss" when using Y to encode X
- Properties

▶
$$D(X \parallel Y) = 0$$
 iff $P(X \neq Y) = 0$, $D(X \parallel Y) \neq D(Y \parallel X)$, and
▶ $D(X \parallel Y) \ge 0$

• For X, Y continuous: $D(X \parallel Y) = \int_{-\infty}^{\infty} f_X(x) \log \frac{f_X(x)}{f_Y(x)} dx$

[Gibbs' inequality]

See R script $_{18/20}$

Mutual information

Mutual information

For X, Y discrete random variables with p.m.f. p_X and p_Y and joint p.m.f. p_{XY} :

$$I(X,Y) = D(p_{XY} \parallel p_X p_Y) = \sum_{a,b} p_{XY}(a,b) \log \frac{p_{XY}(a,b)}{p_X(a)p_Y(b)} = H(X) + H(Y) - H((X,Y))$$

where $H(X) = -\sum_{a} p_X(a) \log p_X(a)$ and $H((X, Y)) = -\sum_{a,b} p_{XY}(a, b) \log p_{XY}(a, b)$

- MI measures how dependent two distributions are
 - Measure how product of marginals can reconstruct the distribution joint distribution
- Properties

•
$$I(X, Y) = I(Y, X)$$
, and $I(X, Y) \ge 0$

•
$$I(X, Y) = 0$$
 iff $X \perp \!\!\!\perp Y$

►
$$NMI = \frac{I(X,Y)}{\min{\{H(X),H(Y)\}}} \in [0,1]$$
 [Normalized mutual information]

• For X, Y continuous: $I(X, Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x, y) \log \frac{f_{XY}(x, y)}{f_X(x)f_Y(y)} dxdy$

19 / 20

See R script

Kevin P. Murphy (2022)

Probabilistic Machine Learning: An Introduction Chapter 6: Information Theory online book