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® Let X be a continuous random variable with density function f(x)
o kth moment of X, if it exists, is:

E[X¥] = /OO xKF(x)dx

® 1 = E[X] is the first moment of X
o kth central moment of X is:
= ELX =)' = [ (= " Fx)oi

o = /E[(X — u)?] standard deviation is the square root of the second central moment
kth standardized moment of X is:

=M _E {(Xﬂ)k]

- ok o
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® [iy = E[(X-m)l/o = 0 since E[X —pu] =0
® jip = El(X=1)?l/s? = 1 since 02 = E[(X — p)?]
® jiz = El[(X—p)*/o3 [(Pearson’s moment) coefficient of skewness]

® Skewness indicates direction and magnitude of a distribution’s deviation from symmetry

Mean
Median

Mode
|
Positive Symmetrical Negative
Skew Distribution Skew
e E.g., for X ~ Exp()), ji3 =2 Prove it!
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® jig=E [(%)4] [(Pearson’s moment) coefficient of kurtosis|
® For X ~ N(u,0), fia =3 fia — 3 is called kurtosis in excess
® Kurtosis is a measure of the dispersion of X around the two values y + o
(+) Leptokurtic General
Forms of
(D) Mesokurtic Kurtosis
(Normal)

(- Platykurtic

® jig > 3 Leptokurtic (slender) distribution has fatter tails. May have outlier problems.
® [ig < 3 Platykurtic (broad) distribution has thinner tails
See R script
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Functions of random variables: expectation

V = mHR? be the volume of a vase of height H and radius R
g(H,R) = mHR? is a random variable (function of random variables)
Py(V = 3) = Pugr(mHR? = 3)

How to calculate E[V] for H 1L R?

E[V] = E[rHR*] :/jo /jc mhr?fy(h)fr(r)dhdr

TWO-DIMENSIONAL CHANGE-OF-VARIABLE FORMULA. Let X and
Y be random variables, and let g : R> — R be a function.

If X and Y are discrete random variables with values aq,as,... and
b1, b, ..., respectively, then

Elg(X,Y)] = ZZ!J(GL’JJJ)P(X =a.,Y =b;).

If X and Y are continuous random variables with joint probability
density function f, then

Blgx.v) = [ - [ g, 1)l y) dzdy.
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Linearity of expectations

Theorem. For X and Y random variables, and s, t € R:
E[rX +sY +t] = rE[X] + sE[Y] + t

Proof. (discrete case)

ElrX+Ys+t]=Y ) (ra+sb+t)P(X =a,Y = b)
a b

= (rZZaP(Xz;:,Yzb)) + (sZZbP(X:a,Y:b)) + (tZZP(Xz;:,Yzb))
a b a b
= (ZaP ) ( > bP(Y >+t—rE[X]+sE[Y]+t

a
Corollary. Efag+ >, a;Xi] = a0 + > i, aiE[X]]

Corollary. X < Y implies E[X] < E[Y]
Proof. Z=Y — X > 0 implies E[Z] = E[Y] — E[X] > 0, i.e., E[Y] > E[X].

6/20



Applications

® Expectation of some discrete distributions
» X~ Ber(p) E[X]=p
» X ~ Bin(n,p) E[X]=n-p
O Because X =Y, X; for X1,..., X, ~ Ber(p)
_1
» X ~ Geo(p) E[X]=3
> X ~ NBin(n,p) ~ E[X] = =12
O Because X = > ", Xi — n for Xi,..., X, ~ Geo(p)
® Expectation of some continuous distributions
» X ~ Exp(\)  E[X]=1x
» X~ Erl(n,\)  E[X]=%
O Because X =) 7, X; for Xi,..., X, ~ Exp(\)
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Expectation of product and quotients

Theorem. For X I Y, we have: E[XY] = E[X]E[Y] Prove it!

PROPAGATION OF INDEPENDENCE. Let Xy, Xo,..., X, be indepen-
dent random variables. For each i, let h; : R — R be a function and
define the random variable

Then Y;,Ys,...,Y,, are also independent.

Corollary. For X 1L Y and Y >0, we have: E[X/Y] > E[X]/E[Y]
Proof. X 1L Y implies X 1L 1/y. By theorem above:

E[X/Y] = E[X-Y/v] = E[X]E[/¥]

and then by Jensen's inequality E[X/Y] > E[X]/E[Y] since 1/y is convex for y > 0. O
Exercise at home. Show that E[X/Y] = E[X]/E[Y] is a false claim.
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Law of iterated expectations

Conditional expectation

(oe]

EXIY b= amxv(alb)  EXIY =y]= [ xavixiy)ae

—0o0

* Def. Ey[E[X|Y]] =X, EIX|Y = bjlpy(bj) and Ev[E[X|Y]] = [= E[X|Y = ylfy(y)dy

® Theorem. (Law of iterated expectations)
Ev[EX|Y]] = E[X]

Proof. (X, Y discrete random variables)

Ev[E[X]Y]] _Zzapxw ailbj)py (b, ZZEPXY ai, b ZHPX = E[X]
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Variance of the sum and Covariance

Var(X + Y) = E[(X 4+ Y — E[X + Y])?] = E[((X — E[X]) + (Y — E[Y]))?]
E[(X — E[X])’] + E[(Y — E[Y])*] + 2E[(X — E[X])(Y — E[Y])]
Var(X) + Var(Y) + 2Cov(X, Y)

Covariance

The covariance Cov(X, Y) of two random variables X and Y is the number:

Cov(X,Y) = E[(X — EIX])(Y — E[Y])]

Uncorrelated Positively correlated Negatively correlated
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Covariance

Theorem. Cov(X,Y) = E[XY]|— E[X]E[Y] Prove it!
If X and Y are independent, Cov(X,Y) =0 and Var(X + Y) = Var(X) + Var(Y)

But there are X and Y uncorrelated (ie., Cov(X, Y) = 0) that are dependent!
Variances of some discrete distributions
> X ~ Ber(p) Var(X)=p(1-p)
» X ~ Bin(n,p) Var(X)=np(l—p)
O Because X =) " | X; for Xi,..., X, ~ Ber(p) and independent
» X ~ Geo(p) Var(X)= 1;—2"
» X ~ NBin(n,p) Var(X)= nl;—f
O Because X =", X; — n for Xi,..., X, ~ Geo(p) and independent
Variances of some continuous distributions
» X ~ Exp(\) Var(X) =1
» X~ Erl(n,A)  Var(X) =
O Because X = > ", X; for Xi,..., X, ~ Exp()\) and independent
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Covariance

COVARIANCE UNDER CHANGE OF UNITS. Let X and Y be two
random variables. Then

Cov(rX + s,tY +u) = rt Cov(X,Y)

for all numbers 7, s,t, and u.

® Hence, Var(rX +sY + t) = r?Var(X) + s?Var(Y) + 2rsCov(X, Y)

® (Covariance depends on the units of measure!
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Correlation coefficient

DEFINITION. Let X and Y be two random variables. The correlation
coefficient p(X,Y) is defined to be 0 if Var(X) = 0 or Var(Y) = 0,
and otherwise

o r) = SN
/ Var(X) Var(Y")
® Correlation coefficient is dimensionless (not affected by change of units)
» E.g., if X and Y are in Km, then Cov(X,Y), Var(X) and Var(Y) are in Km?
-1<p(X,Y)<1

® The bounds are derived from the Schwarz’s inequality:

E[IXY] < VEX?]VE[Y?]
Proof. For any u,w € R, we have 2|uw| < u? + w?. Therefore, 2|UW| < U% + W2 for r.v.’s U
and V. By defining U = X/\/E[x?] and W = Y/\/E[v?] (*), we have
2XY/\ JEX3/E[v2] < X*/E[x?] + Y?/E[v?]. Taking the expectations, we conclude:
2EXY1/\/EIX?/E[Y?] < 2. (*) The case E[X?] =0 or E[Y?] = 0 is left as an exercise. O
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Sum of independent random variables

® For X ~Fxand Y ~ Fy, let Z=X+ Y. We know
E[Z] = E[X] + E[Y] Var(Z) = Var(X) + Var(Y) +2Cov(X,Y)

® \What is the distribution function of Z when X 1L Y?

® Examples:
» For X ~ Bin(n,p) and Y ~ Bin(m, p), Z ~ Bin(n+ m, p)
» For X ~ Geo(p) (days radio 1 breaks) and Y ~ Geo(p) (days radio 2 breaks):

pz(X +Y = k) pr — 1) =(k=1)p*(1 - p)2

® See Lesson 04 and Lesson 08 for convolutlon formulas
ADDING TWO INDEPENDENT DISCRETE RANDOM VARIABLES. Let X
and Y be two independent discrete random variables, with probabil-
ity mass functions px and py. Then the probability mass function
pz of Z = X +Y satisfies

- pr(c — by)py (b)),

14 /20



Sum of two Normal random variables

Theorem. If X ~ N(ux,0%) and Y ~ N(uy,0%) and X 1L Y, then:
Z=X+Y ~ N(ux + py,o% + %)
Proof. See [T, Sect. 11.2] O

® In general: Z = aX + bY + ¢ ~ N(aux + buy + ¢, a’c% + b*o%,
® The converse of the theorem also holds: [Lévy-Cramér theorem]

» If X 1L Y and Z = X+ Y is normally distributed, then X and Y follow a normal distribution.

15/20


https://arxiv.org/pdf/1810.01768.pdf

Extremes of independent random variables

THE DISTRIBUTION OF THE MAXIMUM. Let Xy, X5,.... X, be n
independent random variables with the same distribution function
F, and let Z = max{Xy, Xo,...,X,,}. Then

® P(Z<a)=P(Xi1<a,....X,<a)=[[, P(Xi <a)=((F(a))"
® Example: maximum water level over 365 days

THE DISTRIBUTION OF THE MINIMUM. Let X, Xs,...,X, be n
independent random variables with the same distribution function
F,and let V = min{ Xy, Xo,..., X,,}. Then

Fy(a) =1—(1— F(a))™

e P(V<a)=1-P(Xy>a ... X >2)=1—[]",(1— P(X; < a)=1—((1— F(a))"
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Product and quotient of independent random variables

PRODUCT OF INDEPENDENT CONTINUOUS RANDOM VARIABLES. Let
X and Y be two independent continuous random variables with prob-
ability densities fx and fy. Then the probability density function
fz of Z = XY is given by

fz(z) = /"; fr (f) fx(T)ﬁ dx

for —o00 < 2 < 0.

QUOTIENT OF INDEPENDENT CONTINUOUS RANDOM VARIABLES.
Let X and Y be two independent, continuous random variables with
probability densities fx and fy. Then the probability density func-
tion fz of Z = X/Y is given by

f20) = [ fxtea)iv(aialdo

for —oco < z < 0.

® X,Y ~ N(0,1) independent, Z = X/Y ~ Cau(0,1) where:

1

fz(x) = 013

17/20



Kullback-Leibler divergence

KL divergence

For X, Y discrete random variables with p.m.f. px and py:

DOX 1Y) = 3 px() g (a; H(X, Y) = H(X)

where H(X) = —>"_ px(a) log px(a) and H(X;Y) = —>", px(a) log py(a)

® Measure how distribution of Y (model) can reconstruct the distribution of X (data)
» Also called: relative entropy or information gain of X w.r.t. Y
» H(X) is the entropy of X, and H(X, Y) is the cross entropy of X w.r.t Y
» H(X;Y) is the “information” or “uncertainty” or “loss” when using Y to encode X
® Properties
» DX || Y)=0iff P(X#Y)=0, D(X| Y)#D(Y | X), and
» D(X|Y)>0 [Gibbs' inequality]

® For X, Y continuous: D(X || Y) = [~ fx(x)log ?X(i) dx See R script
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https://en.wikipedia.org/wiki/Gibbs%27_inequality

Mutual information

Mutual information

For X, Y discrete random variables with p.m.f. px and py and joint p.m.f. pxy:

I(X,Y) = D(pxv || pxpy) = az;PXY a,b) log()(alz)b)

where H(X) = —3_, px(a)log px(a) and H((X,Y)) = —3_, , pxv(a, b)log pxv(a, b)

H(X) + H(Y) = H((X, Y))

® MI measures how dependent two distributions are

» Measure how product of marginals can reconstruct the distribution joint distribution
® Properties

» (X, Y)=1(Y,X),and I(X,Y) >0

» (X, Y)=0iff X 1L Y

» NMI = % € [0,1] [Normalized mutual information]
® For X, Y continuous: /(X,Y) = [7_ [T fxy(x,y)log f)zig)f(y}(/ ydxdy See R script
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Optional reference

D Kevin P. Murphy (2022)
Probabilistic Machine Learning: An Introduction
Chapter 6: Information Theory
online book
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https://probml.github.io/pml-book/book1.html

