Master Program in *Data Science and Business Informatics*

Statistics for Data Science

Lesson 11 - Moments. Functions of random variables

Salvatore Ruggieri

Department of Computer Science
University of Pisa, Italy

salvatore.ruggieri@unipi.it
Moments

- Let X be a continuous random variable with density function $f(x)$
- k^{th} moment of X, if it exists, is:
 \[E[X^k] = \int_{-\infty}^{\infty} x^k f(x) dx \]
- $\mu = E[X]$ is the first moment of X
- k^{th} central moment of X is:
 \[\mu_k = E[(X - \mu)^k] = \int_{-\infty}^{\infty} (x - \mu)^k f(x) dx \]
- $\sigma = \sqrt{E[(X - \mu)^2]}$ standard deviation is the square root of the second central moment
- k^{th} standardized moment of X is:
 \[\tilde{\mu}_k = \frac{\mu_k}{\sigma^k} = E \left[\left(\frac{X - \mu}{\sigma} \right)^k \right] \]
Skewness

- $\mu_1 = E[(X - \mu)]/\sigma = 0$ since $E[X - \mu] = 0$
- $\mu_2 = E[(X - \mu)^2]/\sigma^2 = 1$ since $\sigma^2 = E[(X - \mu)^2]$
- $\mu_3 = E[(X - \mu)^3]/\sigma^3$ [Pearson’s moment) coefficient of skewness]
- Skewness indicates direction and magnitude of a distribution’s deviation from symmetry

E.g., for $X \sim \text{Exp}(\lambda)$, $\mu_3 = 2$

Prove it!
Kurtosis

- $\tilde{\mu}_4 = E\left[\left(\frac{X-\mu}{\sigma}\right)^4\right]$
- For $X \sim N(\mu, \sigma)$, $\tilde{\mu}_4 = 3$
- Kurtosis is a measure of the dispersion of X around the two values $\mu \pm \sigma$

$\tilde{\mu}_4 - 3$ is called kurtosis in excess

• $\tilde{\mu}_4 > 3$ Leptokurtic (slender) distribution has fatter tails. May have outlier problems.
• $\tilde{\mu}_4 < 3$ Platykurtic (broad) distribution has thinner tails

See R script
Functions of two or more random variables: expectation

- \(V = \pi HR^2 \) be the volume of a vase of height \(H \) and radius \(R \)
- \(g(H, R) = \pi HR^2 \) is a random variable (function of random variables)
- \(P_V(V = 3) = P_{HR}(\pi HR^2 = 3) \)
- How to calculate \(E[V] \)?

\[
\text{Two-dimensional change-of-variable formula.}
\]

Let \(X \) and \(Y \) be random variables, and let \(g: \mathbb{R}^2 \rightarrow \mathbb{R} \) be a function. If \(X \) and \(Y \) are discrete random variables with values \(a_1, a_2, \ldots \) and \(b_1, b_2, \ldots \), respectively, then

\[
E[g(X, Y)] = \sum_i \sum_j g(a_i, b_j)P(X = a_i, Y = b_j).
\]

If \(X \) and \(Y \) are continuous random variables with joint probability density function \(f \), then

\[
E[g(X, Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y)f(x, y) \, dx \, dy.
\]

If \(H \perp \perp R \):

\[
E[V] = E[\pi HR^2] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \pi hr^2 f_H(h)f_R(r) \, dh \, dr
\]
Theorem. For X and Y random variables, and $s, t \in \mathbb{R}$:

$$E[rX + sY + t] = rE[X] + sE[Y] + t$$

Proof. (discrete case)

$$E[rX + Ys + t] = \sum_a \sum_b (ra + sb + t)P(X = a, Y = b)$$

$$= \left(r \sum_a \sum_b aP(X = a, Y = b) \right) + \left(s \sum_a \sum_b bP(X = a, Y = b) \right) + \left(t \sum_a \sum_b P(X = a, Y = b) \right)$$

$$= \left(r \sum_a aP(X = a) \right) + \left(s \sum_b bP(Y = b) \right) + t = rE[X] + sE[Y] + t$$

Corollary. $E[a_0 + \sum_{i=1}^n a_i X_i] = a_0 + \sum_{i=1}^n a_i E[X_i]$

Corollary. $X \leq Y$ implies $E[X] \leq E[Y]$

Proof. $Z = Y - X \geq 0$ implies $E[Z] = E[Y] - E[X] \geq 0$, i.e., $E[Y] \geq E[X]$.
Applications

- Expectation of some discrete distributions
 - $X \sim Ber(p)$ \quad $E[X] = p$
 - $X \sim Bin(n, p)$ \quad $E[X] = n \cdot p$
 - Because $X = \sum_{i=1}^{n} X_i$ for $X_1, \ldots, X_n \sim Ber(p)$
 - $X \sim Geo(p)$ \quad $E[X] = \frac{1}{p}$
 - $X \sim NBin(n, p)$ \quad $E[X] = \frac{n \cdot (1-p)}{p}$
 - Because $X = \sum_{i=1}^{n} X_i - n$ for $X_1, \ldots, X_n \sim Geo(p)$

- Expectation of some continuous distributions
 - $X \sim Exp(\lambda)$ \quad $E[X] = \frac{1}{\lambda}$
 - $X \sim Erl(n, \lambda)$ \quad $E[X] = \frac{n}{\lambda}$
 - Because $X = \sum_{i=1}^{n} X_i$ for $X_1, \ldots, X_n \sim Exp(\lambda)$
Expectation of product and quotients

Theorem. For $X \independent Y$, we have: $E[XY] = E[X]E[Y]$

Prove it!

Corollary. For $X \independent Y$ and $Y \geq 0$, we have: $E[X/Y] \geq E[X]/E[Y]$

Proof. $X \independent Y$ implies $X \independent 1/Y$. By theorem above:

because by Jensen’s inequality $E[1/Y] \geq 1/E[Y]$ since $1/y$ is convex for $y \geq 0$.

Exercise at home. Show that $E[X/Y] = E[X]/E[Y]$ is a false claim.
Law of iterated/total expectation

Conditional expectation

\[
E[X | Y = b] = \sum_i a_i p(a_i | b) \quad E[X | Y = y] = \int_{-\infty}^\infty xf(x | y)dx
\]

Theorem. (Law of iterated/total expectation)

\[
E_Y [E[X | Y]] = E[X]
\]

Proof. (for \(X, Y\) discrete random variables)

\[
E_Y [E[X | Y]] = \sum_j \sum_i a_i p_{X|Y}(a_i | b_j) p_Y(b_j) = \sum_j \sum_i a_i p_{X|Y}(a_i, b_j) = \sum_i a_i p_X(a_i) = E[X]
\]

Example (cfr the example from Lesson 1 on the Law of total probability)

- Factory 1’s light bulbs working hours \(\sim \text{Exp}(1/1000)\)
- Factory 2’s light bulbs working hours \(\sim \text{Exp}(1/2000)\)
- Factory 1 supplies 60% of the total bulbs on the market and Factory 2 supplies 40% of it.
- What is the average work hour of a light bulb on the market?
Variance of the sum and Covariance

\[\text{Var}(X + Y) = E[(X + Y - E[X + Y])^2] = E[((X - E[X]) + (Y - E[Y]))^2] \]
\[= E[(X - E[X])^2] + E[(Y - E[Y])^2] + 2E[(X - E[X])(Y - E[Y])] \]
\[= \text{Var}(X) + \text{Var}(Y) + 2\text{Cov}(X, Y) \]

Covariance

The covariance \(\text{Cov}(X, Y) \) of two random variables \(X \) and \(Y \) is the number:

\[\text{Cov}(X, Y) = E[(X - E[X])(Y - E[Y])] \]

- If \(X \) and \(Y \) are independent (\(X \perp \perp Y \)):

\[
\text{Cov}(X, Y) = 0 \quad \text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)
\]

- But there are \(X \) and \(Y \) uncorrelated (ie., \(\text{Cov}(X, Y) = 0 \)) that are dependent!

- Variances of some discrete distributions
 - \(X \sim Ber(p) \quad \text{Var}(X) = p(1 - p) \)
 - \(X \sim Bin(n, p) \quad \text{Var}(X) = np(1 - p) \)
 - □ Because \(X = \sum_{i=1}^{n} X_i \) for \(X_1, \ldots, X_n \sim Ber(p) \) and independent
 - \(X \sim Geo(p) \quad \text{Var}(X) = \frac{1-p}{p^2} \)
 - \(X \sim NBin(n, p) \quad \text{Var}(X) = n\frac{1-p}{p^2} \)
 - □ Because \(X = \sum_{i=1}^{n} X_i - n \) for \(X_1, \ldots, X_n \sim Geo(p) \) and independent

- Variances of some continuous distributions
 - \(X \sim Exp(\lambda) \quad \text{Var}(X) = \frac{1}{\lambda^2} \)
 - \(X \sim Erl(n, \lambda) \quad \text{Var}(X) = \frac{n}{\lambda^2} \)
 - □ Because \(X = \sum_{i=1}^{n} X_i \) for \(X_1, \ldots, X_n \sim Exp(\lambda) \) and independent
Covariance and covariance matrix

Covariance depends on the unit of measure!

Hence,

$$\text{Var}(rX + sY + t) = r^2 \text{Var}(X) + s^2 \text{Var}(Y) + 2rs\text{Cov}(X, Y)$$

Bivariate Normal/Gaussian distribution:

$$(X, Y) \sim N((\mu_x, \mu_x), \begin{pmatrix} \sigma_x^2 & \sigma_{xy} \\ \sigma_{xy} & \sigma_y^2 \end{pmatrix})$$

where marginals are $X \sim N(\mu_x, \sigma_x^2)$, $Y \sim N(\mu_y, \sigma_y^2)$, and $\text{Cov}(X, Y) = \sigma_{xy}$

Covariance matrix $\Sigma_{ij} = \text{Cov}(X_i, X_j)$ for a vector $X = (X_1, \ldots, X_n)$ of r.v.’s

See R script lesson 08
Correlation coefficient

Definition. Let X and Y be two random variables. The correlation coefficient $\rho(X, Y)$ is defined to be 0 if $\text{Var}(X) = 0$ or $\text{Var}(Y) = 0$, and otherwise

$$\rho(X, Y) = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X) \text{Var}(Y)}}.$$

- Correlation coefficient is *dimensionless* (not affected by change of units)
 - E.g., if X and Y are in Km, then $\text{Cov}(X, Y)$, $\text{Var}(X)$ and $\text{Var}(Y)$ are in Km2
- Moreover: $-1 \leq \rho(X, Y) \leq 1$
 - The bounds are derived from the **Cauchy–Schwarz's inequality**:
 $$E[|XY|] \leq \sqrt{E[X^2]} \sqrt{E[Y^2]}$$

Proof. For any $u, w \in \mathbb{R}$, we have $2|uw| \leq u^2 + w^2$. Therefore, $2|UW| \leq U^2 + W^2$ for r.v.’s U and V. By defining $U = X/\sqrt{E[X^2]}$ and $W = Y/\sqrt{E[Y^2]}$ (*), we have
 1. $|XY|/\sqrt{E[X^2]} \sqrt{E[Y^2]} \leq X^2/E[X^2] + Y^2/E[Y^2]$. Taking the expectations, we conclude:
 2. $E[|XY|]/\sqrt{E[X^2]} \sqrt{E[Y^2]} \leq 2$.

(*) The case $E[X^2] = 0$ or $E[Y^2] = 0$ is left as an exercise.

\square
Kullback-Leibler divergence

KL divergence

For X, Y discrete random variables with p.m.f. p_X and p_Y:

$$D(X \parallel Y) = \sum_a p_X(a) \log \frac{p_X(a)}{p_Y(a)} = H(X; Y) - H(X)$$

where $H(X) = -\sum_a p_X(a) \log p_X(a)$ and $H(X; Y) = -\sum_a p_X(a) \log p_Y(a)$

- Measure how distribution of Y (model) can reconstruct the distribution of X (data)
 - Also called: relative entropy or information gain of X w.r.t. Y
 - $H(X)$ is the entropy of X, and $H(X; Y)$ is the **cross entropy** of X w.r.t. Y
 - $H(X; Y)$ is the “information” or “uncertainty” or “loss” when using Y to encode X

- Properties
 - $D(X \parallel Y) = 0$ iff $P(X = Y) = 1$, $D(X \parallel Y) \neq D(Y \parallel X)$, and
 - $D(X \parallel Y) \geq 0$

- For X, Y continuous: $D(X \parallel Y) = \int_{-\infty}^{\infty} f_X(x) \log \frac{f_X(x)}{f_Y(x)} dx$
Mutual information

For X, Y discrete random variables with p.m.f. p_X and p_Y and joint p.m.f. p_{XY}:

$$I(X, Y) = D(p_{XY} \| p_X p_Y) = \sum_{a,b} p_{XY}(a,b) \log \frac{p_{XY}(a,b)}{p_X(a)p_Y(b)} = H(X) + H(Y) - H((X, Y))$$

where $H(X) = -\sum_a p_X(a) \log p_X(a)$ and $H((X, Y)) = -\sum_{a,b} p_{XY}(a,b) \log p_{XY}(a,b)$

- MI measures how dependent two distributions are
 - Measure how product of marginals can reconstruct the joint distribution

- Properties
 - $I(X, Y) = I(Y, X),$ and $I(X, Y) \geq 0$
 - $I(X, Y) = 0$ iff $X \perp \perp Y$
 - $\text{NMI} = \frac{I(X, Y)}{\min \{H(X), H(Y)\}} \in [0, 1]$ [Normalized mutual information]

- For X, Y continuous: $I(X, Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x, y) \log \frac{f_{XY}(x,y)}{f_X(x)f_Y(y)} \, dx \, dy$

See R script
Sum of independent random variables (again!)

- See Lesson 04 and Lesson 08 for convolution formulas

Adding two independent discrete random variables. Let X and Y be two independent discrete random variables, with probability mass functions p_X and p_Y. Then the probability mass function p_Z of $Z = X + Y$ satisfies

$$p_Z(c) = \sum_j p_X(c - b_j)p_Y(b_j),$$

where the sum runs over all possible values b_j of Y.

- Examples:
 - For $X \sim Bin(n, p)$ and $Y \sim Bin(m, p)$, $Z \sim Bin(n + m, p)$
 - For $X \sim Geo(p)$ (days radio 1 breaks) and $Y \sim Geo(p)$ (days radio 2 breaks):

$$p_Z(X + Y = k) = \sum_{l=1}^{k-1} p_X(l) \cdot p_Y(k - l) = (k - 1)p^2(1 - p)^{k-2}$$
Sum of two independent Normal random variables

- See Lesson 04 and Lesson 08 for convolution formulas

Theorem. If \(X \sim N(\mu_X, \sigma_X^2) \) and \(Y \sim N(\mu_Y, \sigma_Y^2) \) and \(X \perp Y \), then:

\[
Z = X + Y \sim N(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)
\]

Proof. See [T, Sect. 11.2]

- In general: \(Z = rX + sY + t \sim N(r\mu_X + s\mu_Y + t, r^2\sigma_X^2 + s^2\sigma_Y^2) \)
- The converse of the theorem also holds: \([\text{Lévy-Cramér theorem}]\)
 - If \(X \perp Y \) and \(Z = X + Y \) is normally distributed, then \(X \) and \(Y \) follow a normal distribution.
Extremes of independent random variables

The distribution of the maximum. Let X_1, X_2, \ldots, X_n be n independent random variables with the same distribution function F, and let $Z = \max\{X_1, X_2, \ldots, X_n\}$. Then

$$F_Z(a) = (F(a))^n.$$

Example: maximum water level over 365 days assuming water level on a day is $U(0, 1)$

Example: maximum of two rolls of a die with 4 sides

The distribution of the minimum. Let X_1, X_2, \ldots, X_n be n independent random variables with the same distribution function F, and let $V = \min\{X_1, X_2, \ldots, X_n\}$. Then

$$F_V(a) = 1 - (1 - F(a))^n.$$

$$P(V \leq a) = 1 - P(X_1 > a, \ldots, X_n > a) = 1 - \prod_{i=1}^n (1 - P(X_i \leq a)) = 1 - ((1 - F(a))^n$$
Product and quotient of independent random variables

Product of independent continuous random variables. Let X and Y be two independent continuous random variables with probability densities f_X and f_Y. Then the probability density function f_Z of $Z = XY$ is given by

$$f_Z(z) = \int_{-\infty}^{\infty} f_Y\left(\frac{z}{x}\right) f_X(x) \frac{1}{|x|} \, dx$$

for $-\infty < z < \infty$.

Quotient of independent continuous random variables. Let X and Y be two independent continuous random variables with probability densities f_X and f_Y. Then the probability density function f_Z of $Z = X/Y$ is given by

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(zx) f_Y(x) |x| \, dx$$

for $-\infty < z < \infty$.

- $X, Y \sim N(0, 1)$ independent, $Z = X/Y \sim Cau(0, 1)$ where:

$$f_Z(x) = \frac{1}{\pi(1 + x^2)}$$
For details on entropy, KL divergence, mutual information, NMI, etc.

Kevin P. Murphy (2022)
Probabilistic Machine Learning: An Introduction
Chapter 6: Information Theory

online book